Suppr超能文献

基于双边滤波的隐式保滑动运动正则化的可变形图像配准。

An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK.

Institute of Medical Informatics, University of Lübeck, Germany.

出版信息

Med Image Anal. 2014 Dec;18(8):1299-311. doi: 10.1016/j.media.2014.05.005. Epub 2014 Jun 9.

Abstract

Several biomedical applications require accurate image registration that can cope effectively with complex organ deformations. This paper addresses this problem by introducing a generic deformable registration algorithm with a new regularization scheme, which is performed through bilateral filtering of the deformation field. The proposed approach is primarily designed to handle smooth deformations both between and within body structures, and also more challenging deformation discontinuities exhibited by sliding organs. The conventional Gaussian smoothing of deformation fields is replaced by a bilateral filtering procedure, which compromises between the spatial smoothness and local intensity similarity kernels, and is further supported by a deformation field similarity kernel. Moreover, the presented framework does not require any explicit prior knowledge about the organ motion properties (e.g. segmentation) and therefore forms a fully automated registration technique. Validation was performed using synthetic phantom data and publicly available clinical 4D CT lung data sets. In both cases, the quantitative analysis shows improved accuracy when compared to conventional Gaussian smoothing. In addition, we provide experimental evidence that masking the lungs in order to avoid the problem of sliding motion during registration performs similarly in terms of the target registration error when compared to the proposed approach, however it requires accurate lung segmentation. Finally, quantification of the level and location of detected sliding motion yields visually plausible results by demonstrating noticeable sliding at the pleural cavity boundaries.

摘要

几种生物医学应用需要精确的图像配准,能够有效地应对复杂的器官变形。本文通过引入一种具有新正则化方案的通用可变形配准算法来解决这个问题,该方案通过对变形场进行双边滤波来实现。所提出的方法主要用于处理体结构之间和内部的平滑变形,以及滑动器官表现出的更具挑战性的变形不连续性。传统的变形场高斯平滑被双边滤波过程所取代,该过程在空间平滑度和局部强度相似性核之间进行权衡,并进一步得到变形场相似性核的支持。此外,所提出的框架不需要任何关于器官运动特性(例如分割)的显式先验知识,因此形成了一种全自动的配准技术。使用合成体模数据和公开的临床 4D CT 肺数据集进行了验证。在这两种情况下,与传统的高斯平滑相比,定量分析表明精度有所提高。此外,我们提供了实验证据表明,为了避免配准过程中滑动运动的问题而对肺进行掩蔽,在目标配准误差方面与所提出的方法相似,但它需要准确的肺分割。最后,通过显示在胸膜腔边界处明显的滑动,对检测到的滑动运动的程度和位置进行量化,得到了视觉上合理的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验