Moreno-Dominguez David, Anwander Alfred, Knösche Thomas R
Research Group "Cortical Networks and Cognitive Functions," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Hum Brain Mapp. 2014 Oct;35(10):5000-25. doi: 10.1002/hbm.22528. Epub 2014 Apr 17.
In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them. Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole-brain parcellation.
在现代神经科学领域,人们普遍认为大脑功能依赖于神经网络,因此连接性对于大脑功能至关重要。相应地,基于扩散磁共振成像(dMRI)和纤维束成像来描绘功能性脑区,可能会得到高度相关的脑图谱。现有方法通常旨在找到预先定义数量的脑区,和/或局限于灰质的小区域。然而,一般来说,将大脑划分为有限数量脑区的单一脑图谱不太可能充分代表大脑的功能 - 解剖组织情况。在这项工作中,我们提出层次聚类作为克服这些局限性并实现全脑图谱划分的解决方案。我们证明,该方法在层次树或树状图中对所有粒度级别的基础结构信息进行编码。我们开发了一种最优的树构建和处理流程,能以最小的信息损失降低树的复杂性。我们展示了如何使用这些树来比较不同受试者或记录的相似性结构,以及如何从中提取图谱划分。我们的新方法能更详尽地呈现实际的基础结构,并成功应对了全脑图谱划分的挑战。