Suppr超能文献

一种基于全脑连接性的分层分割方法。

A hierarchical method for whole-brain connectivity-based parcellation.

作者信息

Moreno-Dominguez David, Anwander Alfred, Knösche Thomas R

机构信息

Research Group "Cortical Networks and Cognitive Functions," Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

Hum Brain Mapp. 2014 Oct;35(10):5000-25. doi: 10.1002/hbm.22528. Epub 2014 Apr 17.

Abstract

In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them. Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole-brain parcellation.

摘要

在现代神经科学领域,人们普遍认为大脑功能依赖于神经网络,因此连接性对于大脑功能至关重要。相应地,基于扩散磁共振成像(dMRI)和纤维束成像来描绘功能性脑区,可能会得到高度相关的脑图谱。现有方法通常旨在找到预先定义数量的脑区,和/或局限于灰质的小区域。然而,一般来说,将大脑划分为有限数量脑区的单一脑图谱不太可能充分代表大脑的功能 - 解剖组织情况。在这项工作中,我们提出层次聚类作为克服这些局限性并实现全脑图谱划分的解决方案。我们证明,该方法在层次树或树状图中对所有粒度级别的基础结构信息进行编码。我们开发了一种最优的树构建和处理流程,能以最小的信息损失降低树的复杂性。我们展示了如何使用这些树来比较不同受试者或记录的相似性结构,以及如何从中提取图谱划分。我们的新方法能更详尽地呈现实际的基础结构,并成功应对了全脑图谱划分的挑战。

相似文献

1
A hierarchical method for whole-brain connectivity-based parcellation.一种基于全脑连接性的分层分割方法。
Hum Brain Mapp. 2014 Oct;35(10):5000-25. doi: 10.1002/hbm.22528. Epub 2014 Apr 17.
4
Toward a standardized structural-functional group connectome in MNI space.朝向在 MNI 空间中的标准化结构-功能群连接组。
Neuroimage. 2016 Jan 1;124(Pt A):310-322. doi: 10.1016/j.neuroimage.2015.08.048. Epub 2015 Aug 29.
6
Fiber clustering versus the parcellation-based connectome.纤维聚类与基于分割的连接组学。
Neuroimage. 2013 Oct 15;80:283-9. doi: 10.1016/j.neuroimage.2013.04.066. Epub 2013 Apr 28.
8
Whole-brain anatomical networks: does the choice of nodes matter?全脑解剖网络:节点的选择重要吗?
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.

引用本文的文献

5
Individualized brain mapping for navigated neuromodulation.用于导航神经调节的个体化脑图谱
Chin Med J (Engl). 2024 Mar 5;137(5):508-523. doi: 10.1097/CM9.0000000000002979. Epub 2024 Jan 24.
7
Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters.通过纤维簇体素标注实现个体全脑高度可重复的脑区划分
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:477-486. doi: 10.1007/978-3-030-87234-2_45. Epub 2021 Sep 21.
9
Changes in white matter functional networks during wakefulness and sleep.清醒和睡眠期间的白质功能网络变化。
Hum Brain Mapp. 2022 Oct 1;43(14):4383-4396. doi: 10.1002/hbm.25961. Epub 2022 May 26.

本文引用的文献

8
Connectivity-based parcellation of the human orbitofrontal cortex.基于连接性的人类眶额皮层分区。
J Neurosci. 2012 May 2;32(18):6240-50. doi: 10.1523/JNEUROSCI.0257-12.2012.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验