Cheng Jian, Ghosh Aurobrata, Jiang Tianzi, Deriche Rachid
LIAMA Research Center for Computational Medicine, Institute of Automation, Chinese Academy of Sciences, China.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):911-8. doi: 10.1007/978-3-642-04268-3_112.
Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation.
与扩散张量成像(DTI)相比,高角分辨率成像(HARDI)能够更好地探究白质的复杂微观结构。方向分布函数(ODF)用于描述纤维方向的概率。信息几何理论中已为概率密度族构建了费希尔信息度量,并且它已成功应用于DTI中的张量计算。在本文中,我们基于信息几何和正交基的稀疏表示,提出了一种用于ODF计算的先进黎曼框架。在这个黎曼框架中,指数映射、对数映射和测地线具有封闭形式。并且加权弗雷歇均值在这个流形上唯一存在。我们还提出了一种名为几何各向异性(GA)的新型标量测量,它是ODF与各向同性ODF之间的黎曼测地线距离。ODF的雷尼熵H1/2可以从GA计算得出。此外,我们提出了一个仿射 - 欧几里得框架和一个对数 - 欧几里得框架,以便我们能够在欧几里得空间中工作。作为一个应用,基于加权弗雷歇均值提出了ODF场上的拉格朗日插值。我们在合成数据和真实数据实验上验证了我们的方法。与现有的关于ODF的黎曼框架相比,我们的框架是无模型的。参数(即黎曼坐标)的估计是稳健且线性的。此外,应该注意的是,我们的理论结果可用于正交基表示下的任何概率密度函数(PDF)。