Suppr超能文献

利用高阶张量和秩-k分解检测交叉白质纤维

Detection of crossing white matter fibers with high-order tensors and rank-k decompositions.

作者信息

Jiao Fangxiang, Gur Yaniv, Johnson Chris R, Joshi Sarang

机构信息

SCI Institute, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Inf Process Med Imaging. 2011;22:538-49. doi: 10.1007/978-3-642-22092-0_44.

Abstract

Fundamental to high angular resolution diffusion imaging (HARDI), is the estimation of a positive-semidefinite orientation distribution function (ODF) and extracting the diffusion properties (e.g., fiber directions). In this work we show that these two goals can be achieved efficiently by using homogeneous polynomials to represent the ODF in the spherical deconvolution approach, as was proposed in the Cartesian Tensor-ODF (CT-ODF) formulation. Based on this formulation we first suggest an estimation method for positive-semidefinite ODF by solving a linear programming problem that does not require special parameterization of the ODF. We also propose a rank-k tensor decomposition, known as CP decomposition, to extract the fibers information from the estimated ODF. We show that this decomposition is superior to the fiber direction estimation via ODF maxima detection as it enables one to reach the full fiber separation resolution of the estimation technique. We assess the accuracy of this new framework by applying it to synthetic and experimentally obtained HARDI data.

摘要

高角分辨率扩散成像(HARDI)的基础是估计正定方向分布函数(ODF)并提取扩散特性(例如纤维方向)。在这项工作中,我们表明,正如笛卡尔张量ODF(CT - ODF)公式中所提出的那样,通过在球面反卷积方法中使用齐次多项式来表示ODF,可以有效地实现这两个目标。基于此公式,我们首先通过解决一个线性规划问题,提出了一种正定ODF的估计方法,该方法不需要对ODF进行特殊参数化。我们还提出了一种秩-k张量分解,即CP分解,以从估计的ODF中提取纤维信息。我们表明,这种分解优于通过ODF最大值检测进行的纤维方向估计,因为它能够达到估计技术的全纤维分离分辨率。我们通过将这个新框架应用于合成的和实验获得的HARDI数据来评估其准确性。

相似文献

3
Tractometer: towards validation of tractography pipelines.束径仪:用于追踪技术管道的验证。
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.
4
A Riemannian framework for orientation distribution function computing.一种用于方向分布函数计算的黎曼框架。
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):911-8. doi: 10.1007/978-3-642-04268-3_112.
7
Estimating crossing fibers: a tensor decomposition approach.估计交叉纤维:一种张量分解方法。
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1635-42. doi: 10.1109/TVCG.2008.128.
9
Tractography via the ensemble average propagator in diffusion MRI.扩散磁共振成像中基于总体平均传播子的纤维束成像
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):339-46. doi: 10.1007/978-3-642-33418-4_42.

引用本文的文献

3
Crossing fibers detection with an analytical high order tensor decomposition.基于解析高阶张量分解的交叉纤维检测
Comput Math Methods Med. 2014;2014:476837. doi: 10.1155/2014/476837. Epub 2014 Aug 27.
6
Uncertainty Visualization in HARDI based on Ensembles of ODFs.基于ODF集合的HARDI中的不确定性可视化
IEEE Pac Vis Symp. 2012 Dec 31;2013:193-200. doi: 10.1109/PacificVis.2012.6183591.

本文引用的文献

5
Adaptive kernels for multi-fiber reconstruction.用于多纤维重建的自适应内核
Inf Process Med Imaging. 2009;21:338-49. doi: 10.1007/978-3-642-02498-6_28.
9
Estimating crossing fibers: a tensor decomposition approach.估计交叉纤维:一种张量分解方法。
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1635-42. doi: 10.1109/TVCG.2008.128.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验