Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Ecology. 2010 Mar;91(3):693-707. doi: 10.1890/09-0064.1.
Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (A(N), plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRT(N)). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g N x m(-2) x yr(-1), 2 g P x m(-2) x yr(-1), or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic-minerotrophic gradient because plants and communities were adapted to maximize either A(N) or MRT(N), but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important in controlling overall plant community response to soil N availability than was NUE, and above- and belowground community N uptake efficiencies responded to nutrient addition in a similar manner. Our results demonstrate that plants respond to nutrient availability at multiple biological scales, and we suggest that N uptake efficiency may be a more representative measurement of plant responses to nutrient availability gradients than plant NUE.
氮(N)是许多陆地生态系统中主要的限制生长养分,因此单位 N 吸收量的植物生产力(即 N 利用效率,NUE)是生态系统功能的一个基本组成部分。NUE 由两个组成部分组成:N 生产力(A(N),峰值生物量 N 含量的植物生产力)和植物生物量中 N 的平均停留时间(MRT(N))。我们利用为期五年的施肥实验,从叶片到群落水平,研究了增加 N 和磷(P)可利用性对植物 NUE 的影响方式。我们在美国密歇根州上半岛的天然养分限制泥炭地生态系统的养分梯度上施肥,施肥量为每年每平方米 6 克 N x m(-2)x yr(-1)、2 克 P x m(-2)x yr(-1)或 N 和 P 的组合。我们的目标是确定植物内的碳和 N 分配到叶片和木质组织的变化,以及地上和地下群落内物种组成的变化,如何影响(1)NUE;(2)NUE 组成部分之间的适应性权衡;(3)植物从土壤中获取 N 的效率(N 吸收效率);以及(4)单位土壤 N 可利用性的植物群落生产力(N 响应效率,NRE)。正如预期的那样,N 和 P 的添加通常会增加地上生产力和 N 吸收。特别是,P 的可用性强烈影响了植物吸收和利用 N 的方式。养分添加对 NUE 的影响并不简单。NUE 在叶片和木质组织之间、物种之间以及在寡营养到矿质营养的梯度上存在差异,因为植物和群落适应于最大化 A(N)或 MRT(N),但不能同时兼顾两者。N 可用性的增加强烈降低了植物和群落的 N 吸收效率,而 P 可用性的增加则提高了 N 吸收效率,特别是在固氮灌木中。N 吸收效率在控制植物群落对土壤 N 可利用性的整体响应方面比 NUE 更为重要,地上和地下群落的 N 吸收效率对养分添加的响应方式相似。我们的结果表明,植物在多个生物尺度上对养分可用性做出响应,我们认为 N 吸收效率可能是比植物 NUE 更能代表植物对养分可用性梯度响应的测量。