Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America.
PLoS One. 2010 Apr 23;5(4):e10314. doi: 10.1371/journal.pone.0010314.
While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.
虽然迄今为止测序的大部分已完成微生物基因组都来自培养的细菌和古菌代表,但绝大多数微生物都逃避了当前的培养尝试,严重限制了从这些环境物种中恢复完整甚至部分基因组的能力。单细胞基因组学是一种新颖的非培养方法,可使我们能够访问单个细胞的遗传物质。据我们所知,到目前为止,还没有一个单细胞基因组被完全封闭和完成。在这里,我们报告了未培养的 Candidatus Sulcia muelleri DMIN 单细胞的完整基因组。从绿色尖翅蝉 Draeculacephala minerva 细菌体中分离出的单个共生体细胞的数字 PCR 允许我们评估该细菌是多倍体,每个细胞的基因组拷贝数约为 200-900 个,使其成为单细胞完成工作的最合适目标。对于单细胞鸟枪法测序,分离出单个 Sulcia 细胞,并通过多次置换扩增(MDA)对整个基因组进行扩增。基于 Sanger 的完成方法使我们能够封闭基因组。为了验证我们的单细胞基因组的正确性并排除 MDA 衍生的伪影,我们使用宏基因组方法独立地对来自混合细菌体的 Sulcia 基因组进行了鸟枪法测序和组装,得到了几乎相同的基因组。我们检测到的四个变体似乎是两个样本之间真实的生物学差异。将单细胞基因组与细菌体宏基因组序列数据进行比较,检测到两个单核苷酸多态性(SNP),表明 Sulcia 种群内的遗传多样性极低。这项研究表明,单细胞基因组学在环境样本中生成完整、高质量、非复合参考基因组的能力,可用于群体遗传分析。