Eliasziw M, Donner A
Channing Laboratory, Harvard Medical School, Boston, Massachusetts 02115.
Ann Hum Genet. 1991 Jan;55(1):77-90. doi: 10.1111/j.1469-1809.1991.tb00400.x.
A unified non-iterative approach to point and interval estimation of interclass and intraclass correlations is presented in the context of family studies where there may be more than one individual in each of two classes. The procedure involves a generalization of the Pearson product-moment correlation coefficient, where one permits different weights for the pairs of scores. Unlike the maximum likelihood approach, these estimators are not derived under the assumption of a particular parametric form nor do they require an iterative solution. The asymptotic distributions of the generalized product-moment estimator and of the maximum likelihood estimator are derived under the assumption of normality. Also, several methods for constructing confidence intervals about the interclass correlation parameter are outlined, and the effectiveness of these methods is evaluated by Monte Carlo simulation. Although the focus of this paper is on the analysis of familial data, the methods discussed are applicable to more general situations, including the assessment of correlations between any two variables where each variable is replicated a different number of times for each sample unit.
在家族研究的背景下,提出了一种统一的非迭代方法,用于类间和类内相关性的点估计和区间估计。在家族研究中,两类中的每一类可能有不止一个个体。该过程涉及对皮尔逊积矩相关系数的推广,即允许对分数对采用不同的权重。与最大似然方法不同,这些估计量不是在特定参数形式的假设下推导出来的,也不需要迭代解。在正态性假设下,推导了广义积矩估计量和最大似然估计量的渐近分布。此外,概述了几种构建类间相关参数置信区间的方法,并通过蒙特卡罗模拟评估了这些方法的有效性。尽管本文的重点是家族数据的分析,但所讨论的方法适用于更一般的情况,包括评估任意两个变量之间的相关性,其中每个变量针对每个样本单元重复不同的次数。