Suppr超能文献

路径分析中使用的三种统计方法的蒙特卡罗评估。

A Monte Carlo evaluation of three statistical methods used in path analysis.

作者信息

McGue M, Wette R, Rao D C

出版信息

Genet Epidemiol. 1987;4(2):129-55. doi: 10.1002/gepi.1370040207.

Abstract

Results of a Monte Carlo study to investigate the properties of three statistical methods used extensively in path analysis of family data are presented. All three methods are based on the maximum likelihood principle and involve the assumptions of multivariate normality and large sample (asymptotic) statistical properties. The methods differ, however, in the specification of the likelihood function. Given a set of correlation estimates, method 1 maximizes the likelihood function under the stipulation that the estimates are independent. Method 2 differs from the former by allowing for covariances among the correlation estimators. Method 3 involves (direct) maximization of the likelihood function for the individual family observations assuming multivariate normality for the vector of family observations. The Monte Carlo study investigated validity of the test statistics and confidence intervals and evaluated the relative efficiency and bias of the parameter estimates based on 1,000 replications of each of several simulation conditions. The effects of violating the two basic assumptions, multivariate normality and asymptotic theory, were investigated by comparing results for non-normally vs normally distributed family data and for small vs large sample sizes. It is shown that method 3 provides valid statistical inferences under multivariate normality and that it is generally robust against minor departures from normality. Method 2 is also robust against minor deviations from normality, but it is sensitive to small sample sizes. Method 1 yields highly conservative test statistics under all conditions studied.

摘要

本文呈现了一项蒙特卡罗研究的结果,该研究旨在探究在家族数据路径分析中广泛使用的三种统计方法的性质。这三种方法均基于最大似然原理,并涉及多元正态性假设和大样本(渐近)统计性质。然而,这些方法在似然函数的设定上有所不同。给定一组相关估计值,方法1在估计值相互独立的规定下最大化似然函数。方法2与前者的不同之处在于允许相关估计量之间存在协方差。方法3涉及对个体家族观测值的似然函数进行(直接)最大化,假设家族观测向量服从多元正态分布。蒙特卡罗研究通过对几种模拟条件中的每一种进行1000次重复,研究了检验统计量和置信区间的有效性,并评估了参数估计的相对效率和偏差。通过比较非正态分布与正态分布的家族数据以及小样本与大样本量的结果,研究了违反多元正态性和渐近理论这两个基本假设的影响。结果表明,方法3在多元正态性条件下提供了有效的统计推断,并且通常对轻微偏离正态性具有稳健性。方法2对轻微偏离正态性也具有稳健性,但对小样本量敏感。在所有研究条件下,方法1产生高度保守的检验统计量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验