Suppr超能文献

计算化学与文化遗产相遇:挑战与展望。

Computational chemistry meets cultural heritage: challenges and perspectives.

机构信息

Istituto di Scienze e Tecnologie Molecolari del CNR (CNR-ISTM) and Dipartimento di Chimica via Elce di Sotto, Università degli Studi di Perugia, 01623-Perugia, Italy.

出版信息

Acc Chem Res. 2010 Jun 15;43(6):802-13. doi: 10.1021/ar100012b.

Abstract

Chemistry is central to addressing topics of interest in the cultural heritage field, offering particular insight into the nature and composition of the original materials, the degradation processes that have occurred over the years, and the attendant physical and chemical changes. On the one hand, the chemical characterization of the constituting materials allows researchers to unravel the rich information enclosed in a work of art, providing insight into the manufacturing techniques and revealing aspects of artistic, chronological, historical, and sociocultural significance. On the other hand, despite the recognized contribution of computational chemistry in many branches of materials science, this tool has only recently been applied to cultural heritage, largely because of the inherent complexity of art materials. In this Account, we present a brief overview of the available computational methods, classified on the basis of accuracy level and dimension of the system to be simulated. Among the discussed methodologies, density functional theory (DFT) and time-dependent DFT represent a good compromise between accuracy and computational cost, allowing researchers to model the structural, electronic, and spectroscopic properties of complex extended systems in condensed phase. We then discuss the results of recent research devoted to the computer simulation of prototypical systems in cultural heritage, namely, indigo and Maya Blue, weld and weld lake, and the pigment minium (red lead). These studies provide insight into the basic interactions underlying the materials properties and, in some cases, permit the assignment of the material composition. We discuss properties of interest in the cultural heritage field, ranging from structural geometries and acid-base properties to IR-Raman vibrational spectra and UV-vis absorption-emission spectra (including excited-state deactivation pathways). We particularly highlight how computational chemistry applications in cultural heritage can complement experimental investigations by establishing or rationalizing structure-property relations of the fundamental artwork components. These insights allow researchers to understand the interdependence of such components and eventually the composition of the artwork materials. As a perspective, we aim to extend the simulations to systems of increasing complexity that are similar to the realistic materials encountered in works of art. A challenge is the computational investigation of materials degradation and their associated reactive pathways; here the possible initial components, intermediates, final materials, and various deterioration mechanisms must all be simulated.

摘要

化学在解决文化遗产领域感兴趣的主题方面起着核心作用,特别能够深入了解原始材料的性质和组成、多年来发生的降解过程,以及随之而来的物理和化学变化。一方面,构成材料的化学特征分析使研究人员能够解开艺术作品中包含的丰富信息,深入了解制造技术,并揭示艺术、时间、历史和社会文化意义等方面的特征。另一方面,尽管计算化学在材料科学的许多分支中得到了公认的贡献,但由于艺术材料固有的复杂性,该工具直到最近才被应用于文化遗产领域。在本述评中,我们简要概述了现有的计算方法,根据要模拟的系统的精度水平和维度对其进行分类。在所讨论的方法中,密度泛函理论(DFT)和含时 DFT 在准确性和计算成本之间取得了很好的平衡,使研究人员能够模拟复杂扩展体系在凝聚相中的结构、电子和光谱性质。然后,我们讨论了最近致力于文化遗产中典型体系的计算机模拟的研究结果,即靛蓝和玛雅蓝、焊料和焊渣,以及颜料铅丹(红色氧化铅)。这些研究深入了解了材料性质的基本相互作用,在某些情况下,还允许对材料组成进行分配。我们讨论了在文化遗产领域中感兴趣的性质,范围从结构几何形状和酸碱性质到 IR-Raman 振动光谱和 UV-vis 吸收-发射光谱(包括激发态失活途径)。我们特别强调了计算化学在文化遗产中的应用如何通过建立或合理化基本艺术品成分的结构-性质关系来补充实验研究。这些见解使研究人员能够理解这些成分的相互依赖性,最终理解艺术品材料的组成。作为一个展望,我们旨在将模拟扩展到与艺术作品中遇到的真实材料相似的越来越复杂的系统。一个挑战是对材料降解及其相关反应途径的计算研究;在这里,必须模拟可能的初始成分、中间体、最终材料和各种劣化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验