Department of Applied Chemistry, School of Engineering, The University of Tokyo and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Science. 2010 May 28;328(5982):1144-7. doi: 10.1126/science.1188605. Epub 2010 Apr 29.
Self-assembly is a powerful technique for the bottom-up construction of discrete, well-defined nanoscale structures. Large multicomponent systems (with more than 50 components) offer mechanistic insights into biological assembly but present daunting synthetic challenges. Here we report the self-assembly of giant M24L48 coordination spheres from 24 palladium ions (M) and 48 curved bridging ligands (L). The structure of this multicomponent system is highly sensitive to the geometry of the bent ligands. Even a slight change in the ligand bend angle critically switches the final structure observed across the entire ensemble of building blocks between M24L48 and M12L24 coordination spheres. The amplification of this small initial difference into an incommensurable difference in the resultant structures is a key mark of emergent behavior.
自组装是一种强大的技术,可用于从下至上构建离散、明确定义的纳米结构。大型多组分系统(超过 50 个组分)为生物组装提供了机械洞察力,但也带来了令人生畏的合成挑战。在这里,我们报告了由 24 个钯离子 (M) 和 48 个弯曲桥连配体 (L) 自组装而成的巨型 M24L48 配位球。该多组分系统的结构对弯曲配体的几何形状高度敏感。即使弯曲配体的弯曲角度略有变化,也会在整个构建块组件的整个集合中,从 M24L48 到 M12L24 配位球,关键地切换最终观察到的结构。这种微小的初始差异放大为不可通约的结构差异,是涌现行为的一个关键标志。