Laboratoire d'Exploration Fonctionnelle des Genomes, Institut de Radiobiologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique, 2 rue Gaston Cremieux, F-91000 Evry, France.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Apr-Jun;7(2):251-62. doi: 10.1109/TCBB.2008.87.
Reconstruction of gene-gene interactions from large-scale data such as microarrays is a first step toward better understanding the mechanisms at work in the cell. Two main issues have to be managed in such a context: 1) choosing which measures have to be used to distinguish between direct and indirect interactions from high-dimensional microarray data and 2) constructing networks with a low proportion of false-positive edges. We present an efficient methodology for the reconstruction of gene interaction networks in a small-sample-size setting. The strength of independence of any two genes is measured, in such "high-dimensional network," by a regularized estimation of partial correlation based on Partial Least Squares Regression. We finally emphasize specific properties of the proposed method. To assess the sensitivity and specificity of the method, we carried out the reconstruction of networks from simulated data. We also tested PLS-based partial correlation network on static and dynamic real microarray data. An R implementation of the proposed algorithm is available from http://biodev.extra.cea.fr/plspcnetwork/.
从大规模数据(如微阵列)中重建基因-基因相互作用是更好地理解细胞中作用机制的第一步。在这种情况下,必须处理两个主要问题:1)选择要使用的措施,以区分高维微阵列数据中的直接和间接相互作用,2)构建具有低比例假阳性边缘的网络。我们提出了一种在小样本量设置中重建基因交互网络的有效方法。在这种“高维网络”中,通过基于偏最小二乘回归的正则化偏相关估计来衡量任何两个基因的独立性强度。最后,我们强调了所提出方法的特定性质。为了评估该方法的灵敏度和特异性,我们从模拟数据中重建了网络。我们还在静态和动态真实微阵列数据上测试了基于 PLS 的偏相关网络。所提出算法的 R 实现可从 http://biodev.extra.cea.fr/plspcnetwork/ 获得。
IEEE/ACM Trans Comput Biol Bioinform. 2010
BMC Bioinformatics. 2009-11-24
IEEE Trans Biomed Eng. 2011-7-29
IEEE/ACM Trans Comput Biol Bioinform. 2011
IEEE/ACM Trans Comput Biol Bioinform. 2015
PLoS Comput Biol. 2016-2-29
Chemometr Intell Lab Syst. 2014-11-15
J Bioinform Comput Biol. 2014-8