文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 PLS 回归的正则化偏相关估计从微阵列数据中构建基因关联网络。

Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression.

机构信息

Laboratoire d'Exploration Fonctionnelle des Genomes, Institut de Radiobiologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique, 2 rue Gaston Cremieux, F-91000 Evry, France.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2010 Apr-Jun;7(2):251-62. doi: 10.1109/TCBB.2008.87.


DOI:10.1109/TCBB.2008.87
PMID:20431145
Abstract

Reconstruction of gene-gene interactions from large-scale data such as microarrays is a first step toward better understanding the mechanisms at work in the cell. Two main issues have to be managed in such a context: 1) choosing which measures have to be used to distinguish between direct and indirect interactions from high-dimensional microarray data and 2) constructing networks with a low proportion of false-positive edges. We present an efficient methodology for the reconstruction of gene interaction networks in a small-sample-size setting. The strength of independence of any two genes is measured, in such "high-dimensional network," by a regularized estimation of partial correlation based on Partial Least Squares Regression. We finally emphasize specific properties of the proposed method. To assess the sensitivity and specificity of the method, we carried out the reconstruction of networks from simulated data. We also tested PLS-based partial correlation network on static and dynamic real microarray data. An R implementation of the proposed algorithm is available from http://biodev.extra.cea.fr/plspcnetwork/.

摘要

从大规模数据(如微阵列)中重建基因-基因相互作用是更好地理解细胞中作用机制的第一步。在这种情况下,必须处理两个主要问题:1)选择要使用的措施,以区分高维微阵列数据中的直接和间接相互作用,2)构建具有低比例假阳性边缘的网络。我们提出了一种在小样本量设置中重建基因交互网络的有效方法。在这种“高维网络”中,通过基于偏最小二乘回归的正则化偏相关估计来衡量任何两个基因的独立性强度。最后,我们强调了所提出方法的特定性质。为了评估该方法的灵敏度和特异性,我们从模拟数据中重建了网络。我们还在静态和动态真实微阵列数据上测试了基于 PLS 的偏相关网络。所提出算法的 R 实现可从 http://biodev.extra.cea.fr/plspcnetwork/ 获得。

相似文献

[1]
Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression.

IEEE/ACM Trans Comput Biol Bioinform. 2010

[2]
Reconstruction of genetic association networks from microarray data: a partial least squares approach.

Bioinformatics. 2008-2-15

[3]
Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.

Mol Biosyst. 2010-6

[4]
Regularized estimation of large-scale gene association networks using graphical Gaussian models.

BMC Bioinformatics. 2009-11-24

[5]
Reconstructing directed signed gene regulatory network from microarray data.

IEEE Trans Biomed Eng. 2011-7-29

[6]
Reverse engineering molecular regulatory networks from microarray data with qp-graphs.

J Comput Biol. 2009-2

[7]
Influence of prior knowledge in constraint-based learning of gene regulatory networks.

IEEE/ACM Trans Comput Biol Bioinform. 2011

[8]
Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.

Genome Inform. 2007

[9]
A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.

PLoS One. 2015-7-24

[10]
A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.

IEEE/ACM Trans Comput Biol Bioinform. 2015

引用本文的文献

[1]
HB-PLS: A statistical method for identifying biological process or pathway regulators by integrating Huber loss and Berhu penalty with partial least squares regression.

For Res (Fayettev). 2021-3-30

[2]
Roles of Physicochemical and Structural Properties of RNA-Binding Proteins in Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning.

Int J Mol Sci. 2022-4-17

[3]
Revealing protein networks and gene-drug connectivity in cancer from direct information.

Sci Rep. 2017-6-16

[4]
Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

Adv Bioinformatics. 2017

[5]
A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.

PLoS Comput Biol. 2016-2-29

[6]
Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data.

IET Syst Biol. 2015-2

[7]
Constructing Metabolic Association Networks Using High-dimensional Mass Spectrometry Data.

Chemometr Intell Lab Syst. 2014-11-15

[8]
A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.

BMC Syst Biol. 2014

[9]
Comparative analysis of false discovery rate methods in constructing metabolic association networks.

J Bioinform Comput Biol. 2014-8

[10]
Iterative reconstruction of high-dimensional Gaussian Graphical Models based on a new method to estimate partial correlations under constraints.

PLoS One. 2013-4-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索