文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

构建代谢关联网络中错误发现率方法的比较分析

Comparative analysis of false discovery rate methods in constructing metabolic association networks.

作者信息

Koo Imhoi, Yao Sen, Zhang Xiang, Kim Seongho

机构信息

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.

出版信息

J Bioinform Comput Biol. 2014 Aug;12(4):1450018. doi: 10.1142/S0219720014500188. Epub 2014 Aug 7.


DOI:10.1142/S0219720014500188
PMID:25152043
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4144070/
Abstract

Gaussian graphical model (GGM)-based method, a key approach to reverse engineering biological networks, uses partial correlation to measure conditional dependence between two variables by controlling the contribution from other variables. After estimating partial correlation coefficients, one of the most critical processes in network construction is to control the false discovery rate (FDR) to assess the significant associations among variables. Various FDR methods have been proposed mainly for biomarker discovery, but it still remains unclear which FDR method performs better for network construction. Furthermore, there is no study to see the effect of the network structure on network construction. We selected the six FDR methods, the linear step-up procedure (BH95), the adaptive linear step-up procedure (BH00), Efron's local FDR (LFDR), Benjamini-Yekutieli's step-up procedure (BY01), Storey's q-value procedure (Storey01), and Storey-Taylor-Siegmund's adaptive step-up procedure (STS04), to evaluate their performances on network construction. We further considered two network structures, random and scale-free networks, to investigate their influence on network construction. Both simulated data and real experimental data suggest that STS04 provides the highest true positive rate (TPR) or F1 score, while BY01 has the highest positive predictive value (PPV) in network construction. In addition, no significant effect of the network structure is found on FDR methods.

摘要

基于高斯图形模型(GGM)的方法是逆向工程生物网络的关键方法,它通过控制其他变量的贡献,使用偏相关来衡量两个变量之间的条件依赖性。在估计偏相关系数之后,网络构建中最关键的过程之一是控制错误发现率(FDR),以评估变量之间的显著关联。已经提出了各种FDR方法,主要用于生物标志物发现,但对于网络构建而言,哪种FDR方法表现更好仍不清楚。此外,尚无研究考察网络结构对网络构建的影响。我们选择了六种FDR方法,即线性逐步程序(BH95)、自适应线性逐步程序(BH00)、埃弗龙的局部FDR(LFDR)、本雅明尼 - 耶库蒂利的逐步程序(BY01)、斯托里的q值程序(Storey01)以及斯托里 - 泰勒 - 西格蒙德的自适应逐步程序(STS04),来评估它们在网络构建方面的性能。我们进一步考虑了两种网络结构,即随机网络和无标度网络,以研究它们对网络构建的影响。模拟数据和实际实验数据均表明,在网络构建中,STS04具有最高的真阳性率(TPR)或F1分数,而BY01具有最高的阳性预测值(PPV)。此外,未发现网络结构对FDR方法有显著影响。

相似文献

[1]
Comparative analysis of false discovery rate methods in constructing metabolic association networks.

J Bioinform Comput Biol. 2014-8

[2]
Bon-EV: an improved multiple testing procedure for controlling false discovery rates.

BMC Bioinformatics. 2017-1-3

[3]
Effects of dependence in high-dimensional multiple testing problems.

BMC Bioinformatics. 2008-2-25

[4]
A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model.

Sci Rep. 2019-7-26

[5]
Power and type I error rate of false discovery rate approaches in genome-wide association studies.

BMC Genet. 2005-12-30

[6]
SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks.

PLoS Comput Biol. 2018-8-13

[7]
Constructing Metabolic Association Networks Using High-dimensional Mass Spectrometry Data.

Chemometr Intell Lab Syst. 2014-11-15

[8]
Comparison of false discovery rate methods in identifying genes with differential expression.

Genomics. 2005-10

[9]
SOME STEP-DOWN PROCEDURES CONTROLLING THE FALSE DISCOVERY RATE UNDER DEPENDENCE.

Stat Sin. 2008

[10]
Controlling the false discovery rate with constraints: the Newman-Keuls test revisited.

Biom J. 2007-2

引用本文的文献

[1]
Correlation of blood-based immune molecules with cardiac gene expression profiles reveals insights into Chagas cardiomyopathy pathogenesis.

Front Immunol. 2024

[2]
Genetic Association with Subgingival Bacterial Colonization in Chronic Periodontitis.

Genes (Basel). 2018-5-23

[3]
Longitudinal Metabolite Profiling of Cerebrospinal Fluid in Normal Pressure Hydrocephalus Links Brain Metabolism with Exercise-Induced VEGF Production and Clinical Outcome.

Neurochem Res. 2016-7

本文引用的文献

[1]
Discriminating different classes of biological networks by analyzing the graphs spectra distribution.

PLoS One. 2012-12-19

[2]
IntPath--an integrated pathway gene relationship database for model organisms and important pathogens.

BMC Syst Biol. 2012

[3]
MetSign: a computational platform for high-resolution mass spectrometry-based metabolomics.

Anal Chem. 2011-9-20

[4]
Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression.

IEEE/ACM Trans Comput Biol Bioinform. 2010

[5]
Regularized estimation of large-scale gene association networks using graphical Gaussian models.

BMC Bioinformatics. 2009-11-24

[6]
fdrtool: a versatile R package for estimating local and tail area-based false discovery rates.

Bioinformatics. 2008-6-15

[7]
Effects of dependence in high-dimensional multiple testing problems.

BMC Bioinformatics. 2008-2-25

[8]
Reconstruction of genetic association networks from microarray data: a partial least squares approach.

Bioinformatics. 2008-2-15

[9]
Sparse inverse covariance estimation with the graphical lasso.

Biostatistics. 2008-7

[10]
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data.

BMC Syst Biol. 2007-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索