Suppr超能文献

计算模型为临床科学与评估提供信息:在纹状体损伤患者类别学习中的应用。

Computational Models Inform Clinical Science and Assessment: An Application to Category Learning in Striatal-Damaged Patients.

作者信息

Maddox W Todd, Filoteo J Vincent, Zeithamova Dagmar

机构信息

Department of Psychology, Institute for Neuroscience, University of Texas.

出版信息

J Math Psychol. 2010 Feb 1;54(1):109-122. doi: 10.1016/j.jmp.2009.01.004.

Abstract

In this article we develop a new model of classification that is intermediate between the static, single strategy decision-bound models and the dynamic trial by trial multiple systems model, dCOVIS. The new model, referred to as the sCOVIS model, assumes hypothesis-testing and procedural-based subsystems are active on each trial, but that the parameters that govern behavior of the system are fixed (static) within a block of trials. To determine the clinical utility of the model, it was applied to nonlinear information-integration classification data from patients with Parkinson's (PD) and Huntington's disease (HD). In one application, the models suggest that the locus of HD patients' nonlinear information-integration deficits is in their increased reliance on hypothesis-testing strategies, whereas the locus of PD patients' deficit is in the application of sub-optimal procedural-based strategies. In a second application, the weight associated with the hypothesis-testing subsystem is shown to account for a significant amount of the variance in longitudinal cognitive decline in non-demented PD patients above and beyond that predicted by accuracy alone. Together, the accuracy rate and this model index account for 72% of the total variance associated with cognitive decline in this sample of PD patients. Interestingly, the Wisconsin Card Sort task added no additional predictive power above and beyond that predicted by nonlinear accuracy alone.

摘要

在本文中,我们开发了一种新的分类模型,它介于静态的单策略决策边界模型和动态的逐次试验多系统模型dCOVIS之间。这个新模型,即sCOVIS模型,假设假设检验和基于程序的子系统在每次试验中都是活跃的,但控制系统行为的参数在一组试验中是固定(静态)的。为了确定该模型的临床效用,我们将其应用于帕金森病(PD)和亨廷顿舞蹈症(HD)患者的非线性信息整合分类数据。在一项应用中,模型表明HD患者非线性信息整合缺陷的位置在于他们对假设检验策略的过度依赖,而PD患者缺陷的位置在于次优的基于程序的策略的应用。在第二项应用中,与假设检验子系统相关的权重被证明可以解释非痴呆PD患者纵向认知衰退中很大一部分方差,这一解释超出了仅由准确性预测的方差。综合起来,准确率和这个模型指标解释了该PD患者样本中与认知衰退相关的总方差的72%。有趣的是,威斯康星卡片分类任务在仅由非线性准确性预测的基础上没有增加额外的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d76d/2861423/e2637357cbb1/nihms84063f1.jpg

相似文献

2
Rule-based and information-integration category learning in normal aging.基于规则和信息整合的正常衰老中的类别学习。
Neuropsychologia. 2010 Aug;48(10):2998-3008. doi: 10.1016/j.neuropsychologia.2010.06.008. Epub 2010 Jun 12.

引用本文的文献

2
Rule-based category learning in patients with Parkinson's disease.帕金森病患者基于规则的类别学习
Neuropsychologia. 2009 Apr;47(5):1213-26. doi: 10.1016/j.neuropsychologia.2009.01.031. Epub 2009 Feb 2.

本文引用的文献

3
Distinct mechanisms in visual category learning.视觉类别学习中的不同机制。
Cogn Affect Behav Neurosci. 2007 Sep;7(3):251-9. doi: 10.3758/cabn.7.3.251.
5
Models in search of a brain.寻找大脑的模型。
Cogn Affect Behav Neurosci. 2007 Jun;7(2):90-108. doi: 10.3758/cabn.7.2.90.
9
Characterizing rule-based category learning deficits in patients with Parkinson's disease.帕金森病患者基于规则的类别学习缺陷特征分析。
Neuropsychologia. 2007 Jan 28;45(2):305-20. doi: 10.1016/j.neuropsychologia.2006.06.034. Epub 2006 Sep 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验