Suppr超能文献

寻找大脑的模型。

Models in search of a brain.

作者信息

Love Bradley C, Gureckis Todd M

机构信息

Department of Psychology, University of Texas, Austin, Texas 78712-0187, USA.

出版信息

Cogn Affect Behav Neurosci. 2007 Jun;7(2):90-108. doi: 10.3758/cabn.7.2.90.

Abstract

Mental localization efforts tend to stress the where more than the what. We argue that the proper targets for localization are well-specified cognitive models. We make this case by relating an existing cognitive model of category learning to a learning circuit involving the hippocampus, perirhinal, and prefrontal cortices. Results from groups varying in function along this circuit (e.g., infants, amnesics, and older adults) are successfully simulated by reducing the model's ability to form new clusters in response to surprising events, such as an error in supervised learning or an unfamiliar stimulus in unsupervised learning. Clusters in the model are akin to conjunctive codes that are rooted in an episodic experience (the surprising event) yet can develop to resemble abstract codes as they are updated by subsequent experiences. Thus, the model holds that the line separating episodic and semantic information can become blurred. Dissociations (categorization vs. recognition) are explained in terms of cluster recruitment demands.

摘要

心理定位研究往往更强调“在哪里”而非“是什么”。我们认为,定位的恰当目标是明确界定的认知模型。我们通过将现有的类别学习认知模型与一个涉及海马体、内嗅皮质和前额叶皮质的学习回路联系起来来阐述这一观点。沿着这个回路功能各异的群体(如婴儿、失忆症患者和老年人)的研究结果,通过降低模型在面对令人惊讶的事件(如监督学习中的错误或无监督学习中的不熟悉刺激)时形成新集群的能力而得到成功模拟。模型中的集群类似于扎根于情景体验(令人惊讶的事件)的联结编码,但随着后续体验的更新,它们可以发展得类似于抽象编码。因此,该模型认为,区分情景信息和语义信息的界限可能会变得模糊。解离现象(分类与识别)是根据集群招募需求来解释的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验