Suppr超能文献

解锁森林蓄积数据:将单株树木表现与未测量的环境因素相关联。

Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors.

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Ecol Appl. 2010 Apr;20(3):684-99. doi: 10.1890/08-2334.1.

Abstract

Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other environmental factors are typically absent. Thus, inventory data alone cannot be used to parameterize mechanistic models of forest dynamics in which individual performance depends on light, water, nutrients, etc. To overcome this limitation, we developed methods to estimate species-specific parameters (thetaG) relating sapling growth (G) to L using data sets in which G, but not L, is observed for each sapling. Our approach involves: (1) using calibration data that we collected in both eastern and western North America to quantify the probability that saplings receive different amounts of light, conditional on covariates x that can be obtained from inventory data (e.g., sapling crown class and neighborhood crowding); and (2) combining these probability distributions with observed G and x to estimate thetaG using Bayesian computational methods. Here, we present a test case using a data set in which G, L, and x were observed for saplings of nine species. This test data set allowed us to compare estimates of thetaG obtained from the standard approach (where G and L are observed for each sapling) to our method (where G and x, but not L, are observed). For all species, estimates of thetaG obtained from analyses with and without observed L were similar. This suggests that our approach should be useful for estimating light-dependent growth functions from inventory data that lack direct measurements of L. Our approach could be extended to estimate parameters relating sapling mortality to L from inventory data, as well as to deal with uncertainty in other resources (e.g., water or nutrients) or environmental factors (e.g., temperature).

摘要

地理范围广泛的森林清查,如美国农业部林务局的森林清查和分析(FIA)计划,包含数以百万计的个体树木生长和死亡率记录,这些记录可用于开发森林动态的大规模模型。然而,清查数据的一个限制是,通常缺乏个体层面的光照(L)和其他环境因素的测量值。因此,仅使用清查数据无法对依赖光照、水、养分等因素的森林动态的机制模型进行参数化。为了克服这一限制,我们开发了使用数据集中的个体生长(G)与 L 相关的特定物种参数(thetaG)的估算方法,其中每个幼树的 G,但不是 L,都是观察到的。我们的方法包括:(1)使用我们在北美东部和西部收集的校准数据,量化幼树接收不同光照量的概率,这些概率是基于可以从清查数据中获得的协变量 x(例如,幼树树冠等级和邻近拥挤度);(2)将这些概率分布与观察到的 G 和 x 结合起来,使用贝叶斯计算方法估计 thetaG。在这里,我们使用一个数据集进行了一个测试案例,其中观测到了 9 个物种的幼树的 G、L 和 x。这个测试数据集使我们能够比较从标准方法(其中每个幼树都观测到 G 和 L)和我们的方法(其中观测到 G 和 x,但不是 L)获得的 thetaG 估计值。对于所有物种,从有和没有观测到 L 的分析中获得的 thetaG 估计值都很相似。这表明,我们的方法应该有助于从缺乏直接光照测量值的清查数据中估计依赖光照的生长函数。我们的方法可以扩展到从清查数据中估计与光照相关的幼树死亡率参数,以及处理其他资源(如水分或养分)或环境因素(如温度)的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验