Faculty of Chemistry and Biochemistry, AG Molekulare Zellbiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
J Biol Chem. 2010 Jul 2;285(27):20740-7. doi: 10.1074/jbc.M110.120170. Epub 2010 May 3.
Upon a stimulus of light, histamine is released from Drosophila photoreceptor axonal endings. It is taken up into glia where Ebony converts it into beta-alanyl-histamine (carcinine). Carcinine moves into photoreceptor cells and is there cleaved into beta-alanine and histamine by Tan activity. Tan thus provides a key function in the recycling pathway of the neurotransmitter histamine. It is also involved in the process of cuticle formation. There, it cleaves beta-alanyl-dopamine, a major component in cuticle sclerotization. Active Tan enzyme is generated by a self-processing proteolytic cleavage from a pre-protein at a conserved Gly-Cys sequence motif. We confirmed the dependence on the Gly-Cys motif by in vitro mutagenesis. Processing time delays the rise to full Tan activity up to 3 h behind its putative circadian RNA expression in head. To investigate its pleiotropic functions, we have expressed Tan as a His(6) fusion protein in Escherichia coli and have purified it to homogeneity. We found wild type and mutant His(6)-Tan protein co-migrating in size exclusion chromatography with a molecular weight compatible with homodimer formation. We conclude that dimer formation is preceding pre-protein processing. Drosophila tan(1) null mutant analysis revealed that amino acid Arg(217) is absolutely required for processing. Substitution of Met(256) in tan(5), on the contrary, does not affect processing extensively but renders it prone to degradation. This also leads to a strong tan phenotype although His(6)-Tan(5) retains activity. Kinetic parameters of Tan reveal characteristic differences in K(m) and k(cat) values of carcinine and beta-alanyl-dopamine cleavage, which conclusively illustrate the divergent tasks met by Tan.
当受到光线刺激时,组氨酸从果蝇光感受器轴突末梢释放出来。它被摄取到神经胶质细胞中,在那里 Ebony 将其转化为β-丙氨酰组氨酸(精胺)。精胺进入光感受器细胞,并在那里由 Tan 活性将其切割成β-丙氨酸和组氨酸。因此,Tan 提供了神经递质组氨酸再循环途径中的关键功能。它还参与了表皮形成的过程。在那里,它切割β-丙氨酰-多巴胺,这是表皮硬化的主要成分。活性 Tan 酶是通过自蛋白水解从保守的 Gly-Cys 序列基序的前体蛋白中产生的。我们通过体外诱变证实了对 Gly-Cys 基序的依赖性。加工时间会延迟 Tan 活性的上升,使其比头部中推定的昼夜 RNA 表达延迟 3 小时达到完全 Tan 活性。为了研究其多效性功能,我们在大肠杆菌中表达了 Tan 作为 His(6)融合蛋白,并将其纯化至均质。我们发现野生型和突变型 His(6)-Tan 蛋白在大小排阻层析中共同迁移,分子量与同源二聚体形成兼容。我们得出结论,二聚体形成先于前体蛋白加工。果蝇 tan(1) 缺失突变体分析表明,氨基酸 Arg(217)绝对需要加工。相反,tan(5)中的 Met(256)取代不会广泛影响加工,但会使其容易降解。尽管 His(6)-Tan(5)保留活性,但这也导致强烈的 tan 表型。Tan 的动力学参数揭示了精胺和β-丙氨酰-多巴胺切割的 K(m)和 k(cat)值的特征差异,这明确说明了 Tan 所面临的不同任务。