Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.
Mol Cell Biol. 2010 Jul;30(13):3151-64. doi: 10.1128/MCB.00322-09. Epub 2010 May 3.
The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.
雷帕霉素靶蛋白(mTOR)信号复合物整合了来自生长因子和营养物质可用性的信号,以控制细胞生长和增殖,部分通过对蛋白质合成机制的影响。蛋白质合成率在细胞周期中波动,但在 G2/M 转换期间显著降低。mTOR 复合物的命运及其在有丝分裂期间协调细胞生长和增殖信号与蛋白质合成的作用仍然未知。在这里,我们证明尽管蛋白质合成减少且 mTORC1 上游激活物活性降低,但刺激蛋白质合成的 mTOR 复合物 1(mTORC1)途径在有丝分裂期间实际上是超活跃的。我们描述了 mTORC1 成分之一 raptor 的先前未知的 G2/M 特异性磷酸化,并证明有丝分裂 raptor 磷酸化改变了有丝分裂期间 mTORC1 的功能。磷酸肽图谱分析和突变分析表明,rapTOR 的有丝分裂磷酸化有助于细胞周期通过 G2/M 过渡。缺乏 raptor 磷酸化的突变体导致细胞在 G2/M 中延迟,而 raptor 的消耗导致细胞在 G1 中积累。我们确定细胞周期蛋白依赖性激酶 1(cdk1[cdc2])和糖原合成酶激酶 3(GSK3)途径是两个可能参与有丝分裂特异性 rapTOR 磷酸化和改变 mTORC1 活性的有丝分裂调节蛋白激酶途径。此外,有丝分裂 raptor 通过有丝分裂期间的 mRNA 内部核糖体进入位点(IRES)促进翻译,并被证明与雷帕霉素耐药有关。这些数据表明,该途径可能在有丝分裂期间增加 IRES 依赖性 mRNA 翻译和雷帕霉素不敏感中发挥作用。