Suppr超能文献

有丝分裂调控蛋白 Raptor 促进 mTORC1 活性、G2/M 细胞周期进程和内部核糖体进入位点介导的 mRNA 翻译。

Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation.

机构信息

Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA.

出版信息

Mol Cell Biol. 2010 Jul;30(13):3151-64. doi: 10.1128/MCB.00322-09. Epub 2010 May 3.

Abstract

The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G(2)/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G(2)/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G(2)/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G(2)/M, whereas depletion of raptor causes cells to accumulate in G(1). We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.

摘要

雷帕霉素靶蛋白(mTOR)信号复合物整合了来自生长因子和营养物质可用性的信号,以控制细胞生长和增殖,部分通过对蛋白质合成机制的影响。蛋白质合成率在细胞周期中波动,但在 G2/M 转换期间显著降低。mTOR 复合物的命运及其在有丝分裂期间协调细胞生长和增殖信号与蛋白质合成的作用仍然未知。在这里,我们证明尽管蛋白质合成减少且 mTORC1 上游激活物活性降低,但刺激蛋白质合成的 mTOR 复合物 1(mTORC1)途径在有丝分裂期间实际上是超活跃的。我们描述了 mTORC1 成分之一 raptor 的先前未知的 G2/M 特异性磷酸化,并证明有丝分裂 raptor 磷酸化改变了有丝分裂期间 mTORC1 的功能。磷酸肽图谱分析和突变分析表明,rapTOR 的有丝分裂磷酸化有助于细胞周期通过 G2/M 过渡。缺乏 raptor 磷酸化的突变体导致细胞在 G2/M 中延迟,而 raptor 的消耗导致细胞在 G1 中积累。我们确定细胞周期蛋白依赖性激酶 1(cdk1[cdc2])和糖原合成酶激酶 3(GSK3)途径是两个可能参与有丝分裂特异性 rapTOR 磷酸化和改变 mTORC1 活性的有丝分裂调节蛋白激酶途径。此外,有丝分裂 raptor 通过有丝分裂期间的 mRNA 内部核糖体进入位点(IRES)促进翻译,并被证明与雷帕霉素耐药有关。这些数据表明,该途径可能在有丝分裂期间增加 IRES 依赖性 mRNA 翻译和雷帕霉素不敏感中发挥作用。

相似文献

2
Raptor is phosphorylated by cdc2 during mitosis.
PLoS One. 2010 Feb 12;5(2):e9197. doi: 10.1371/journal.pone.0009197.
3
GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling.
Biochem J. 2015 Sep 1;470(2):207-21. doi: 10.1042/BJ20150404. Epub 2015 Jul 9.
5
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation.
J Biol Chem. 2010 Jan 1;285(1):80-94. doi: 10.1074/jbc.M109.029637. Epub 2009 Oct 28.
7
Intestinal cell kinase (ICK) promotes activation of mTOR complex 1 (mTORC1) through phosphorylation of Raptor Thr-908.
J Biol Chem. 2012 Apr 6;287(15):12510-9. doi: 10.1074/jbc.M111.302117. Epub 2012 Feb 22.
8
mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression.
Mol Cell Biol. 2011 Jul;31(14):2787-801. doi: 10.1128/MCB.05437-11. Epub 2011 May 16.
9
PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling.
J Biol Chem. 2007 Aug 31;282(35):25604-12. doi: 10.1074/jbc.M704343200. Epub 2007 Jun 28.
10
mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells.
J Endocrinol. 2013 Jan 2;216(1):21-9. doi: 10.1530/JOE-12-0351. Print 2013 Jan.

引用本文的文献

2
Polyploidy and mTOR signaling: a possible molecular link.
Cell Commun Signal. 2024 Mar 27;22(1):196. doi: 10.1186/s12964-024-01526-9.
3
Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives.
Front Pharmacol. 2023 Aug 14;14:1224151. doi: 10.3389/fphar.2023.1224151. eCollection 2023.
4
Expression of mTOR in normal and pathological conditions.
Mol Cancer. 2023 Jul 15;22(1):112. doi: 10.1186/s12943-023-01820-z.
6
Bi-allelic TTI1 variants cause an autosomal-recessive neurodevelopmental disorder with microcephaly.
Am J Hum Genet. 2023 Mar 2;110(3):499-515. doi: 10.1016/j.ajhg.2023.01.006. Epub 2023 Jan 31.
7
Apoptosis as a Barrier against CIN and Aneuploidy.
Cancers (Basel). 2022 Dec 21;15(1):30. doi: 10.3390/cancers15010030.
8
9
eIF3a regulation of mTOR signaling and translational control via HuR in cellular response to DNA damage.
Oncogene. 2022 Apr;41(17):2431-2443. doi: 10.1038/s41388-022-02262-5. Epub 2022 Mar 12.
10
CHERP Regulates the Alternative Splicing of pre-mRNAs in the Nucleus.
Int J Mol Sci. 2022 Feb 25;23(5):2555. doi: 10.3390/ijms23052555.

本文引用的文献

1
Principles of translational control: an overview.
Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12):a011528. doi: 10.1101/cshperspect.a011528.
2
Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation.
J Biol Chem. 2010 Jan 1;285(1):80-94. doi: 10.1074/jbc.M109.029637. Epub 2009 Oct 28.
3
Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR.
J Biol Chem. 2009 May 29;284(22):14693-7. doi: 10.1074/jbc.C109.002907. Epub 2009 Apr 3.
4
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
PLoS Biol. 2009 Feb 10;7(2):e38. doi: 10.1371/journal.pbio.1000038.
5
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17414-9. doi: 10.1073/pnas.0809136105. Epub 2008 Oct 27.
6
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation.
Curr Biol. 2008 Sep 9;18(17):1269-77. doi: 10.1016/j.cub.2008.07.078. Epub 2008 Aug 21.
7
AMPK phosphorylation of raptor mediates a metabolic checkpoint.
Mol Cell. 2008 Apr 25;30(2):214-26. doi: 10.1016/j.molcel.2008.03.003.
8
eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy.
J Cell Biol. 2008 Apr 21;181(2):293-307. doi: 10.1083/jcb.200710215.
9
cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner.
EMBO J. 2008 Apr 9;27(7):1005-16. doi: 10.1038/emboj.2008.39. Epub 2008 Mar 13.
10
Regulation of catalytic activity of S6 kinase 2 during cell cycle.
Mol Cell Biochem. 2008 Jan;307(1-2):59-64. doi: 10.1007/s11010-007-9584-5. Epub 2007 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验