Suppr超能文献

大脑多样性通过模式差异而进化。

Brain diversity evolves via differences in patterning.

作者信息

Sylvester Jonathan B, Rich Constance A, Loh Yong-Hwee E, van Staaden Moira J, Fraser Gareth J, Streelman J Todd

机构信息

Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 25;107(21):9718-23. doi: 10.1073/pnas.1000395107. Epub 2010 May 3.

Abstract

Differences in brain region size among species are thought to arise late in development via adaptive control over neurogenesis, as cells of previously patterned compartments proliferate, die, and/or differentiate into neurons. Here we investigate comparative brain development in ecologically distinct cichlid fishes from Lake Malawi and demonstrate that brains vary among recently evolved lineages because of early patterning. Divergence among rock-dwellers and sand-dwellers in the relative size of the telencephalon versus the thalamus is correlated with gene expression variation in a regulatory circuit (composed of six3, fezf2, shh, irx1b, and wnt1) known from model organisms to specify anterior-posterior (AP) brain polarity and position the shh-positive signaling boundary zona limitans intrathalamica (ZLI) in the forebrain. To confirm that changes in this coexpression network are sufficient to produce the differences we observe, we manipulated WNT signaling in vivo by treating rock-dwelling cichlid embryos with temporally precise doses of LiCl. Chemically treated rock-dwellers develop gene expression patterns, ZLIs, and forebrains distinct from controls and untreated conspecifics, but strongly resembling those of sand-dwellers. Notably, endemic Malawi rock- and sand-dwelling lineages are alternately fixed for an SNP in irx1b, a mediator of WNT signaling required for proper thalamus and ZLI. Together, these natural experiments in neuroanatomy, development, and genomics suggest that evolutionary changes in AP patterning establish ecologically relevant differences in the elaboration of cichlid forebrain compartments. In general, variation in developmental patterning might lay the foundations on which neurogenesis erects diverse brain architectures.

摘要

物种间脑区大小的差异被认为是在发育后期通过对神经发生的适应性控制而产生的,因为先前已形成模式的细胞区室中的细胞会增殖、死亡和/或分化为神经元。在此,我们研究了来自马拉维湖生态特征不同的丽鱼科鱼类的脑发育比较情况,并证明由于早期模式形成,脑在最近进化的谱系中存在差异。岩栖类和沙栖类在端脑与丘脑相对大小上的差异与一个调控回路(由six3、fezf2、shh、irx1b和wnt1组成)中的基因表达变化相关,从模式生物中已知该调控回路可确定脑的前后(AP)极性并在前脑中定位shh阳性信号边界即丘脑间限制带(ZLI)。为了证实这种共表达网络的变化足以产生我们所观察到的差异,我们通过用时间精确剂量的LiCl处理岩栖丽鱼胚胎在体内操纵WNT信号。经化学处理的岩栖类形成了与对照和未处理的同种个体不同,但与沙栖类非常相似的基因表达模式、ZLI和前脑。值得注意的是,马拉维特有的岩栖和沙栖谱系在irx1b中的一个单核苷酸多态性(SNP)上交替固定,irx1b是丘脑和ZLI正常发育所需的WNT信号的介质。总之,这些在神经解剖学、发育和基因组学方面的自然实验表明,AP模式形成的进化变化在丽鱼前脑区室的精细发育中建立了与生态相关的差异。一般来说,发育模式的变化可能为神经发生构建多样脑结构奠定基础。

相似文献

1
Brain diversity evolves via differences in patterning.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9718-23. doi: 10.1073/pnas.1000395107. Epub 2010 May 3.
2
Competing signals drive telencephalon diversity.
Nat Commun. 2013;4:1745. doi: 10.1038/ncomms2753.
3
Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain.
Development. 2003 Dec;130(23):5579-87. doi: 10.1242/dev.00685. Epub 2003 Oct 1.
4
Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon.
Development. 2007 Sep;134(17):3167-76. doi: 10.1242/dev.001461. Epub 2007 Aug 1.
6
Hedgehog signaling from the ZLI regulates diencephalic regional identity.
Nat Neurosci. 2004 Nov;7(11):1242-9. doi: 10.1038/nn1338. Epub 2004 Oct 24.
7
Patterning the developing diencephalon.
Brain Res Rev. 2007 Jan;53(1):17-26. doi: 10.1016/j.brainresrev.2006.06.004. Epub 2006 Jul 31.
10
Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon.
Development. 2008 Feb;135(3):441-50. doi: 10.1242/dev.010082. Epub 2007 Dec 19.

引用本文的文献

1
Widespread Genetic Signals of Visual System Adaptation in Deepwater Cichlid Fishes.
Mol Biol Evol. 2025 Jul 1;42(7). doi: 10.1093/molbev/msaf147.
2
Spatial Multiomics Toward Understanding Neurological Systems.
J Mass Spectrom. 2025 Jun;60(6):e5143. doi: 10.1002/jms.5143.
5
East African cichlid fishes.
Evodevo. 2023 Jan 5;14(1):1. doi: 10.1186/s13227-022-00205-5.
7
targeting using CRISPR/Cas9 in the Malawi cichlid .
R Soc Open Sci. 2022 Apr 20;9(4):220077. doi: 10.1098/rsos.220077. eCollection 2022 Apr.
8
Differences in brain morphology of brown trout across stream, lake, and hatchery environments.
Ecol Evol. 2022 Mar 8;12(3):e8684. doi: 10.1002/ece3.8684. eCollection 2022 Feb.
9
Genome-enabled discovery of evolutionary divergence in brains and behavior.
Sci Rep. 2021 Jun 21;11(1):13016. doi: 10.1038/s41598-021-92385-8.

本文引用的文献

1
Human-specific transcriptional regulation of CNS development genes by FOXP2.
Nature. 2009 Nov 12;462(7270):213-7. doi: 10.1038/nature08549.
3
Habitat complexity, brain, and behavior.
Brain Behav Evol. 2008;72(2):123-34. doi: 10.1159/000151472. Epub 2008 Oct 7.
4
A periodic pattern generator for dental diversity.
BMC Biol. 2008 Jul 14;6:32. doi: 10.1186/1741-7007-6-32.
5
Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids.
Genome Biol. 2008;9(7):R113. doi: 10.1186/gb-2008-9-7-r113. Epub 2008 Jul 10.
6
Visual sensitivities tuned by heterochronic shifts in opsin gene expression.
BMC Biol. 2008 May 23;6:22. doi: 10.1186/1741-7007-6-22.
8
Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon.
Development. 2008 Feb;135(3):441-50. doi: 10.1242/dev.010082. Epub 2007 Dec 19.
9
Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon.
Development. 2007 Sep;134(17):3167-76. doi: 10.1242/dev.001461. Epub 2007 Aug 1.
10
Do constructional constraints influence cichlid craniofacial diversification?
Proc Biol Sci. 2007 Aug 7;274(1620):1867-75. doi: 10.1098/rspb.2007.0444.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验