Sylvester Jonathan B, Rich Constance A, Loh Yong-Hwee E, van Staaden Moira J, Fraser Gareth J, Streelman J Todd
Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9718-23. doi: 10.1073/pnas.1000395107. Epub 2010 May 3.
Differences in brain region size among species are thought to arise late in development via adaptive control over neurogenesis, as cells of previously patterned compartments proliferate, die, and/or differentiate into neurons. Here we investigate comparative brain development in ecologically distinct cichlid fishes from Lake Malawi and demonstrate that brains vary among recently evolved lineages because of early patterning. Divergence among rock-dwellers and sand-dwellers in the relative size of the telencephalon versus the thalamus is correlated with gene expression variation in a regulatory circuit (composed of six3, fezf2, shh, irx1b, and wnt1) known from model organisms to specify anterior-posterior (AP) brain polarity and position the shh-positive signaling boundary zona limitans intrathalamica (ZLI) in the forebrain. To confirm that changes in this coexpression network are sufficient to produce the differences we observe, we manipulated WNT signaling in vivo by treating rock-dwelling cichlid embryos with temporally precise doses of LiCl. Chemically treated rock-dwellers develop gene expression patterns, ZLIs, and forebrains distinct from controls and untreated conspecifics, but strongly resembling those of sand-dwellers. Notably, endemic Malawi rock- and sand-dwelling lineages are alternately fixed for an SNP in irx1b, a mediator of WNT signaling required for proper thalamus and ZLI. Together, these natural experiments in neuroanatomy, development, and genomics suggest that evolutionary changes in AP patterning establish ecologically relevant differences in the elaboration of cichlid forebrain compartments. In general, variation in developmental patterning might lay the foundations on which neurogenesis erects diverse brain architectures.
物种间脑区大小的差异被认为是在发育后期通过对神经发生的适应性控制而产生的,因为先前已形成模式的细胞区室中的细胞会增殖、死亡和/或分化为神经元。在此,我们研究了来自马拉维湖生态特征不同的丽鱼科鱼类的脑发育比较情况,并证明由于早期模式形成,脑在最近进化的谱系中存在差异。岩栖类和沙栖类在端脑与丘脑相对大小上的差异与一个调控回路(由six3、fezf2、shh、irx1b和wnt1组成)中的基因表达变化相关,从模式生物中已知该调控回路可确定脑的前后(AP)极性并在前脑中定位shh阳性信号边界即丘脑间限制带(ZLI)。为了证实这种共表达网络的变化足以产生我们所观察到的差异,我们通过用时间精确剂量的LiCl处理岩栖丽鱼胚胎在体内操纵WNT信号。经化学处理的岩栖类形成了与对照和未处理的同种个体不同,但与沙栖类非常相似的基因表达模式、ZLI和前脑。值得注意的是,马拉维特有的岩栖和沙栖谱系在irx1b中的一个单核苷酸多态性(SNP)上交替固定,irx1b是丘脑和ZLI正常发育所需的WNT信号的介质。总之,这些在神经解剖学、发育和基因组学方面的自然实验表明,AP模式形成的进化变化在丽鱼前脑区室的精细发育中建立了与生态相关的差异。一般来说,发育模式的变化可能为神经发生构建多样脑结构奠定基础。