Suppr超能文献

从孤立蛋白质的能量学预测相互作用位点:一种新的表位作图方法。

Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping.

机构信息

Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale Delle Ricerche, Milan, Italy.

出版信息

Biophys J. 2010 May 19;98(9):1966-75. doi: 10.1016/j.bpj.2010.01.014.

Abstract

An increasing number of functional studies of proteins have shown that sequence and structural similarities alone may not be sufficient for reliable prediction of their interaction properties. This is particularly true for proteins recognizing specific antibodies, where the prediction of antibody-binding sites, called epitopes, has proven challenging. The antibody-binding properties of an antigen depend on its structure and related dynamics. Aiming to predict the antibody-binding regions of a protein, we investigate a new approach based on the integrated analysis of the dynamical and energetic properties of antigens, to identify nonoptimized, low-intensity energetic interaction networks in the protein structure isolated in solution. The method is based on the idea that recognition sites may correspond to localized regions with low-intensity energetic couplings with the rest of the protein, which allows them to undergo conformational changes, to be recognized by a binding partner, and to tolerate mutations with minimal energetic expense. Upon analyzing the results on isolated proteins and benchmarking against antibody complexes, it is found that the method successfully identifies binding sites located on the protein surface that are accessible to putative binding partners. The combination of dynamics and energetics can thus discriminate between epitopes and other substructures based only on physical properties. We discuss implications for vaccine design.

摘要

越来越多的蛋白质功能研究表明,仅序列和结构相似性可能不足以可靠地预测它们的相互作用特性。对于识别特定抗体的蛋白质来说尤其如此,因为预测抗体结合位点(称为表位)一直具有挑战性。抗原的抗体结合特性取决于其结构和相关动力学。为了预测蛋白质的抗体结合区域,我们研究了一种新方法,该方法基于对抗原的动力学和能量特性的综合分析,以识别在溶液中分离的蛋白质结构中未优化的、低强度能量相互作用网络。该方法基于这样的想法,即识别位点可能对应于与蛋白质其余部分的低强度能量耦合的局部区域,这使得它们能够发生构象变化,被结合伴侣识别,并容忍最小能量消耗的突变。在对分离的蛋白质进行分析并与抗体复合物进行基准测试后,发现该方法成功地识别了位于蛋白质表面的可与假定的结合伴侣相互作用的结合位点。因此,动力学和能量学的结合可以仅基于物理性质区分表位和其他亚结构。我们讨论了对疫苗设计的影响。

相似文献

1
2
Rational epitope design for protein targeting.
ACS Chem Biol. 2013 Feb 15;8(2):397-404. doi: 10.1021/cb300487u. Epub 2012 Nov 15.
3
CEP: a conformational epitope prediction server.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W168-71. doi: 10.1093/nar/gki460.
4
In Silico Prediction of Linear B-Cell Epitopes on Proteins.
Methods Mol Biol. 2017;1484:255-264. doi: 10.1007/978-1-4939-6406-2_17.
6
Prediction of Antibody Epitopes.
Methods Mol Biol. 2015;1348:23-32. doi: 10.1007/978-1-4939-2999-3_4.
9
Conformational selection of allergen-antibody complexes-surface plasticity of paratopes and epitopes.
Protein Eng Des Sel. 2019 Dec 31;32(11):513-523. doi: 10.1093/protein/gzaa014.
10
Mapping Antibody Epitopes by Solution NMR Spectroscopy: Practical Considerations.
Methods Mol Biol. 2018;1785:29-51. doi: 10.1007/978-1-4939-7841-0_3.

引用本文的文献

1
Mechanistic insights into the structure-based design of a CspZ-targeting Lyme disease vaccine.
Nat Commun. 2025 Apr 7;16(1):2898. doi: 10.1038/s41467-025-58182-x.
2
Guiding Competitive Binding Assays Using Protein-Protein Interaction Prediction: The HER2-Affitin Use Case.
ACS Omega. 2024 Dec 5;9(50):49522-49529. doi: 10.1021/acsomega.4c07317. eCollection 2024 Dec 17.
4
Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens.
J Chem Theory Comput. 2023 Aug 22;19(16):5315-5333. doi: 10.1021/acs.jctc.3c00513. Epub 2023 Aug 1.
6
Evaluation of docking procedures reliability in affitins-partners interactions.
Front Chem. 2022 Dec 1;10:1074249. doi: 10.3389/fchem.2022.1074249. eCollection 2022.
8
Computational Epitope Prediction and Design for Antibody Development and Detection.
Methods Mol Biol. 2023;2552:255-266. doi: 10.1007/978-1-0716-2609-2_13.
9
The Rv3874-Rv3875 chimeric protein shows a promiscuous serodiagnostic potential for tuberculosis.
Tuberculosis (Edinb). 2022 Sep;136:102253. doi: 10.1016/j.tube.2022.102253. Epub 2022 Aug 30.

本文引用的文献

1
Genome-based vaccine development: a short cut for the future.
Hum Vaccin. 2008 May-Jun;4(3):184-8. doi: 10.4161/hv.4.3.6313. Epub 2010 May 15.
3
Extracting the causality of correlated motions from molecular dynamics simulations.
Biophys J. 2009 Sep 16;97(6):1747-55. doi: 10.1016/j.bpj.2009.07.019.
4
Improving structure-based function prediction using molecular dynamics.
Structure. 2009 Jul 15;17(7):919-29. doi: 10.1016/j.str.2009.05.010.
5
A computational Grid framework for immunological applications.
Philos Trans A Math Phys Eng Sci. 2009 Jul 13;367(1898):2705-16. doi: 10.1098/rsta.2009.0046.
6
Protective immunity to influenza: lessons from the virus for successful vaccine design.
Expert Rev Vaccines. 2009 Jun;8(6):689-93. doi: 10.1586/erv.09.35.
7
Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8701-6. doi: 10.1073/pnas.0903427106. Epub 2009 May 13.
8
The European effort towards the development of mucosal vaccines for poverty-related diseases.
Vaccine. 2009 May 5;27(20):2641-8. doi: 10.1016/j.vaccine.2009.02.070. Epub 2009 Mar 3.
9
Long-timescale molecular dynamics simulations of protein structure and function.
Curr Opin Struct Biol. 2009 Apr;19(2):120-7. doi: 10.1016/j.sbi.2009.03.004. Epub 2009 Apr 8.
10
Probing the flexibility of large conformational changes in protein structures through local perturbations.
PLoS Comput Biol. 2009 Apr;5(4):e1000343. doi: 10.1371/journal.pcbi.1000343. Epub 2009 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验