SCITEC-CNR, Milan, Italy.
Politecnico di Torino, Department of Applied Science and Technology, Torino, Italy.
Methods Mol Biol. 2023;2552:255-266. doi: 10.1007/978-1-0716-2609-2_13.
The design of optimized protein antigens is a fundamental step in the development of new vaccine candidates and in the detection of therapeutic antibodies. A fundamental prerequisite is the identification of antigenic regions that are most prone to interact with antibodies, namely, B-cell epitopes. Here, we describe an efficient structure-based computational method for epitope prediction, called MLCE. In this approach, all that is required is the 3D structure of the antigen of interest. MLCE can be applied to glycosylated proteins, facilitating the identification of immunoreactive versus immune-shielding carbohydrates.
优化蛋白抗原的设计是开发新型疫苗候选物和检测治疗性抗体的基础步骤。一个基本的前提是确定最容易与抗体相互作用的抗原区域,即 B 细胞表位。在这里,我们描述了一种有效的基于结构的计算方法用于表位预测,称为 MLCE。在这种方法中,唯一需要的是感兴趣的抗原的 3D 结构。MLCE 可应用于糖基化蛋白,有助于鉴定免疫反应性与免疫屏蔽性的碳水化合物。