Suppr超能文献

在体鉴定细胞穿过基底膜侵袭的调控因子。

In vivo identification of regulators of cell invasion across basement membranes.

机构信息

Biology Department, Duke University, Durham, NC 27708, USA.

出版信息

Sci Signal. 2010 May 4;3(120):ra35. doi: 10.1126/scisignal.2000654.

Abstract

Cell invasion through basement membranes during development, immune surveillance, and metastasis remains poorly understood. To gain further insight into this key cellular behavior, we performed an in vivo screen for regulators of cell invasion through basement membranes, using the simple model of Caenorhabditis elegans anchor cell invasion, and identified 99 genes that promote invasion, including the genes encoding the chaperonin complex cct. Notably, most of these genes have not been previously implicated in invasive cell behavior. We characterized members of the cct complex and 11 other gene products, determining the distinct aspects of the invasive cascade that they regulate, including formation of a specialized invasive cell membrane and its ability to breach the basement membrane. RNA interference-mediated knockdown of the human orthologs of cct-5 and lit-1, which had not previously been implicated in cell invasion, reduced the invasiveness of metastatic carcinoma cells, suggesting that a conserved genetic program underlies cell invasion. These results increase our understanding of the genetic underpinnings of cell invasion and also provide new potential therapeutic targets to limit this behavior.

摘要

细胞通过基底膜的侵袭在发育、免疫监视和转移过程中仍未被充分理解。为了更深入地了解这一关键的细胞行为,我们利用秀丽隐杆线虫锚定细胞侵袭的简单模型,进行了体内筛选,以寻找调节细胞通过基底膜侵袭的调控因子,共鉴定出 99 个促进侵袭的基因,包括编码伴侣蛋白复合物 CCT 的基因。值得注意的是,这些基因中的大多数以前并未被涉及到侵袭细胞行为中。我们对 CCT 复合物和其他 11 个基因产物的成员进行了表征,确定了它们调节的侵袭级联反应的不同方面,包括形成专门的侵袭细胞膜及其穿透基底膜的能力。以前未被认为与细胞侵袭有关的 CCT-5 和 LIT-1 的人类同源物的 RNA 干扰介导的敲低降低了转移性癌细胞的侵袭性,这表明细胞侵袭的背后存在保守的遗传程序。这些结果增加了我们对细胞侵袭遗传基础的理解,也为限制这种行为提供了新的潜在治疗靶点。

相似文献

1
In vivo identification of regulators of cell invasion across basement membranes.
Sci Signal. 2010 May 4;3(120):ra35. doi: 10.1126/scisignal.2000654.
2
The transcription factor HLH-2/E/Daughterless regulates anchor cell invasion across basement membrane in C. elegans.
Dev Biol. 2011 Sep 15;357(2):380-91. doi: 10.1016/j.ydbio.2011.07.012. Epub 2011 Jul 18.
3
Cell invasion through basement membranes: an anchor of understanding.
Trends Cell Biol. 2006 May;16(5):250-6. doi: 10.1016/j.tcb.2006.03.004. Epub 2006 Apr 3.
4
Cell invasion through basement membrane: the anchor cell breaches the barrier.
Curr Opin Cell Biol. 2011 Oct;23(5):589-96. doi: 10.1016/j.ceb.2011.05.002. Epub 2011 May 31.
5
UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans.
Nat Cell Biol. 2009 Feb;11(2):183-9. doi: 10.1038/ncb1825. Epub 2008 Dec 21.
6
The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo.
J Cell Biol. 2013 Jun 10;201(6):903-13. doi: 10.1083/jcb.201301091.
7
Anchors away! Fos fosters anchor-cell invasion.
Cell. 2005 Jun 17;121(6):816-7. doi: 10.1016/j.cell.2005.06.003.
8
Forces drive basement membrane invasion in .
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11537-11542. doi: 10.1073/pnas.1808760115. Epub 2018 Oct 22.
9
FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans.
Cell. 2005 Jun 17;121(6):951-62. doi: 10.1016/j.cell.2005.03.031.
10
Breaking down barriers: the evolution of cell invasion.
Curr Opin Genet Dev. 2017 Dec;47:33-40. doi: 10.1016/j.gde.2017.08.003. Epub 2017 Sep 4.

引用本文的文献

3
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell.
Differentiation. 2024 May-Jun;137:100765. doi: 10.1016/j.diff.2024.100765. Epub 2024 Mar 11.
4
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell.
bioRxiv. 2024 Feb 7:2023.03.16.533034. doi: 10.1101/2023.03.16.533034.
6
The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt A):23-34. doi: 10.1016/j.semcdb.2023.07.002. Epub 2023 Jul 6.
9
Basement-Membrane-Related Gene Signature Predicts Prognosis in WHO Grade II/III Gliomas.
Genes (Basel). 2022 Oct 7;13(10):1810. doi: 10.3390/genes13101810.
10
Development of double strand RNA mPEI nanoparticles and application in treating invasive breast cancer.
RSC Adv. 2019 Apr 30;9(23):13186-13200. doi: 10.1039/c9ra01889a. eCollection 2019 Apr 25.

本文引用的文献

1
Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20318-23. doi: 10.1073/pnas.0910962106. Epub 2009 Nov 13.
3
The cancer genome.
Nature. 2009 Apr 9;458(7239):719-24. doi: 10.1038/nature07943.
4
Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited.
J Cell Biol. 2009 Apr 6;185(1):11-9. doi: 10.1083/jcb.200807195. Epub 2009 Mar 30.
5
A role for AP-1 in matrix metalloproteinase production and invadopodia formation of v-Crk-transformed cells.
Exp Cell Res. 2009 May 1;315(8):1384-92. doi: 10.1016/j.yexcr.2009.02.019. Epub 2009 Mar 3.
6
Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs.
J Cell Biol. 2009 Feb 9;184(3):399-408. doi: 10.1083/jcb.200810113. Epub 2009 Feb 2.
7
UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans.
Nat Cell Biol. 2009 Feb;11(2):183-9. doi: 10.1038/ncb1825. Epub 2008 Dec 21.
8
Breaching the basement membrane: who, when and how?
Trends Cell Biol. 2008 Nov;18(11):560-74. doi: 10.1016/j.tcb.2008.08.007. Epub 2008 Oct 9.
9
Targeting the oncogene and kinome chaperone CDC37.
Nat Rev Cancer. 2008 Jul;8(7):491-5. doi: 10.1038/nrc2420. Epub 2008 May 30.
10
A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells.
Mol Cancer Ther. 2008 Jan;7(1):162-70. doi: 10.1158/1535-7163.MCT-07-0484.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验