Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
Graduate Program of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
Plant J. 2010 Jul;63(2):339-351. doi: 10.1111/j.1365-313X.2010.04236.x. Epub 2010 Apr 26.
Chromatin components can be extensively modified and dynamically regulated by a plethora of catalytic complexes. The numerous modifications may form a type of molecular pattern that defines particular local and global 'chromatin states' through extensive cross-talk. Analyses that can integrate multiple genome-wide datasets are essential to determine the interactions and biological function of chromatin modifications in various contexts. Through a combination of hierarchical clustering and pattern visualization, we categorized all annotated Arabidopsis genes into 16 chromatin state clusters using combinations of four chromatin marks (H3K4me3, H3K36me2, H3K27me3 and cytosine methylation) using publicly available data. Our results suggest that gene length may be an important factor in shaping chromatin states across transcription units. By analysis of two rare chromatin states, we found that the enrichment of H3K36me2 around the transcription start site is negatively correlated with transcriptional activities. High-resolution association analyses in the context of chromatin states have identified inter-correlations between chromatin modifications. H3K4me3 were found to be under-represented in actively transcribed regions that are modified by DNA methylation and the H3K36me2 mark, concomitant with increased nucleosome occupancy in these regions. Lastly, quantitative data from transcriptome analyses and gene ontology partitioning were integrated to determine the possible functional relevance of the corresponding chromatin states. We show that modelling the plant epigenome in terms of chromatin states and combining correlative visualization methods can be a productive approach to unravel complex relationships between epigenomic features and the functional output of the genome.
染色质成分可以通过大量的催化复合物进行广泛修饰和动态调节。许多修饰可能形成一种分子模式,通过广泛的串扰来定义特定的局部和全局“染色质状态”。能够整合多个全基因组数据集的分析对于确定不同环境中染色质修饰的相互作用和生物学功能至关重要。通过层次聚类和模式可视化的组合,我们使用公开可用的数据,使用四种染色质标记(H3K4me3、H3K36me2、H3K27me3 和胞嘧啶甲基化)将所有注释的拟南芥基因分类为 16 个染色质状态簇。我们的结果表明,基因长度可能是跨转录单元形成染色质状态的重要因素。通过对两种罕见染色质状态的分析,我们发现转录起始位点附近 H3K36me2 的富集与转录活性呈负相关。在染色质状态背景下的高分辨率关联分析已经确定了染色质修饰之间的相互关联。在被 DNA 甲基化和 H3K36me2 标记修饰的活跃转录区域中,H3K4me3 的含量较低,同时这些区域的核小体占有率增加。最后,将转录组分析和基因本体分割的定量数据进行整合,以确定相应染色质状态的可能功能相关性。我们表明,根据染色质状态对植物表观基因组进行建模,并结合相关可视化方法,可以是一种揭示表观基因组特征与基因组功能输出之间复杂关系的有效方法。