Suppr超能文献

植物对高温和干旱复合胁迫响应的调控机制

The -regulatory codes of response to combined heat and drought stress in .

作者信息

Azodi Christina B, Lloyd John P, Shiu Shin-Han

机构信息

Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.

Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

NAR Genom Bioinform. 2020 Jul 21;2(3):lqaa049. doi: 10.1093/nargab/lqaa049. eCollection 2020 Sep.

Abstract

Plants respond to their environment by dynamically modulating gene expression. A powerful approach for understanding how these responses are regulated is to integrate information about regulatory elements (CREs) into models called regulatory codes. Transcriptional response to combined stress is typically not the sum of the responses to the individual stresses. However, regulatory codes underlying combined stress response have not been established. Here we modeled transcriptional response to single and combined heat and drought stress in . We grouped genes by their pattern of response (independent, antagonistic and synergistic) and trained machine learning models to predict their response using putative CREs (pCREs) as features (median F-measure = 0.64). We then developed a deep learning approach to integrate additional omics information (sequence conservation, chromatin accessibility and histone modification) into our models, improving performance by 6.2%. While pCREs important for predicting independent and antagonistic responses tended to resemble binding motifs of transcription factors associated with heat and/or drought stress, important synergistic pCREs resembled binding motifs of transcription factors not known to be associated with stress. These findings demonstrate how approaches can improve our understanding of the complex codes regulating response to combined stress and help us identify prime targets for future characterization.

摘要

植物通过动态调节基因表达来响应环境。理解这些响应如何被调控的一个有效方法是将有关调控元件(CREs)的信息整合到称为调控代码的模型中。对复合胁迫的转录响应通常不是对单个胁迫响应的总和。然而,复合胁迫响应背后的调控代码尚未建立。在这里,我们对[具体物种]中对单一和复合热胁迫及干旱胁迫的转录响应进行了建模。我们根据基因的响应模式(独立、拮抗和协同)对基因进行分组,并使用推定的CREs(pCREs)作为特征训练机器学习模型来预测它们的响应(中位数F值 = 0.64)。然后,我们开发了一种深度学习方法,将额外的组学信息(序列保守性、染色质可及性和组蛋白修饰)整合到我们的模型中,性能提高了6.2%。虽然对预测独立和拮抗响应重要的pCREs往往类似于与热和/或干旱胁迫相关的转录因子的结合基序,但重要的协同pCREs类似于未知与胁迫相关的转录因子的结合基序。这些发现证明了[具体方法]如何能提高我们对调控复合胁迫响应的复杂代码的理解,并帮助我们识别未来表征的主要目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d95/7671360/6d2d358d097a/lqaa049fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验