Suppr超能文献

冠状病毒传染性支气管炎病毒 3C 样蛋白酶底物特异性的功能和遗传研究。

Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase.

机构信息

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.

出版信息

J Virol. 2010 Jul;84(14):7325-36. doi: 10.1128/JVI.02490-09. Epub 2010 May 5.

Abstract

Coronavirus (CoV) 3C-like proteinase (3CLpro), located in nonstructural protein 5 (nsp5), processes the replicase polyproteins 1a and 1ab (pp1a and pp1ab) at 11 specific sites to produce 12 mature nonstructural proteins (nsp5 to nsp16). Structural and biochemical studies suggest that a conserved Gln residue at the P1 position is absolutely required for efficient cleavage. Here, we investigate the effects of amino acid substitution at the P1 position of 3CLpro cleavage sites of infectious bronchitis virus (IBV) on the cleavage efficiency and viral replication by in vitro cleavage assays and reverse genetic approaches. Our results demonstrated that a P1-Asn substitution at the nsp4-5/Q2779, nsp5-6/Q3086, nsp7-8/Q3462, nsp8-9/Q3672, and nsp9-10/Q3783 sites, a P1-Glu substitution at the nsp8-9/Q3672 site, and a P1-His substitution at the nsp15-16/Q6327 site were tolerated and allowed recovery of infectious mutant viruses, albeit with variable degrees of growth defects. In contrast, a P1-Asn substitution at the nsp6-7/Q3379, nsp12-13/Q4868, nsp13-14/Q5468, and nsp14-15/Q5989 sites, as well as a P1-Pro substitution at the nsp15-16/Q6327 site, abolished 3CLpro-mediated cleavage at the corresponding position and blocked the recovery of infectious viruses. Analysis of the effects of these lethal mutations on RNA synthesis suggested that processing intermediates, such as the nsp6-7, nsp12-13, nsp13-14, nsp14-15, and nsp15-16 precursors, may function in negative-stranded genomic RNA replication, whereas mature proteins may be required for subgenomic RNA (sgRNA) transcription. More interestingly, a mutant 3CLpro with either a P166S or P166L mutation was selected when an IBV infectious cDNA clone carrying the Q6327N mutation at the nsp15-16 site was introduced into cells. Either of the two mutations was proved to enhance significantly the 3CLpro-mediated cleavage efficiency at the nsp15-16 site with a P1-Asn substitution and compensate for the detrimental effects on recovery of infectious virus.

摘要

冠状病毒(CoV)3C 样蛋白酶(3CLpro)位于非结构蛋白 5(nsp5)中,在 11 个特定位置切割复制酶多蛋白 1a 和 1ab(pp1a 和 pp1ab),产生 12 个成熟的非结构蛋白(nsp5 至 nsp16)。结构和生化研究表明,P1 位的保守 Gln 残基对于有效切割是绝对必需的。在这里,我们通过体外切割试验和反向遗传方法研究了传染性支气管炎病毒(IBV)3CLpro 切割位点 P1 位氨基酸取代对切割效率和病毒复制的影响。我们的结果表明,nsp4-5/Q2779、nsp5-6/Q3086、nsp7-8/Q3462、nsp8-9/Q3672 和 nsp9-10/Q3783 位点的 nsp4-5/Q2779、nsp5-6/Q3086、nsp7-8/Q3462、nsp8-9/Q3672 和 nsp9-10/Q3783 位点的 P1-Asn 取代、nsp8-9/Q3672 位点的 P1-Glu 取代和 nsp15-16/Q6327 位点的 P1-His 取代是可以容忍的,并允许恢复感染性突变病毒,尽管存在不同程度的生长缺陷。相比之下,nsp6-7/Q3379、nsp12-13/Q4868、nsp13-14/Q5468 和 nsp14-15/Q5989 位点的 nsp6-7/Q3379、nsp12-13/Q4868、nsp13-14/Q5468 和 nsp14-15/Q5989 位点的 P1-Asn 取代以及 nsp15-16/Q6327 位点的 P1-Pro 取代,阻断了 3CLpro 介导的切割,阻止了感染性病毒的恢复。对这些致死性突变对 RNA 合成影响的分析表明,加工中间体,如 nsp6-7、nsp12-13、nsp13-14、nsp14-15 和 nsp15-16 前体,可能在负链基因组 RNA 复制中发挥作用,而成熟蛋白可能需要亚基因组 RNA(sgRNA)转录。更有趣的是,当将携带 nsp15-16 位点 Q6327N 突变的 IBV 感染性 cDNA 克隆引入细胞时,选择了具有 P166S 或 P166L 突变的突变 3CLpro。这两种突变中的任何一种都被证明能够显著增强 nsp15-16 位点带有 P1-Asn 取代的 3CLpro 介导的切割效率,并弥补对恢复感染性病毒的不利影响。

相似文献

7
Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases.
J Virol. 2014 Dec;88(23):13747-58. doi: 10.1128/JVI.02040-14. Epub 2014 Sep 17.
9
Activity of a purified His-tagged 3C-like proteinase from the coronavirus infectious bronchitis virus.
Virus Res. 1999 Apr;60(2):137-45. doi: 10.1016/s0168-1702(99)00011-8.

引用本文的文献

2
The role of IBV PL1pro in virus replication and suppression of host innate immune responses.
BMC Vet Res. 2023 Dec 13;19(1):270. doi: 10.1186/s12917-023-03839-2.
4
Host-specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome.
PLoS Biol. 2023 Jun 8;21(6):e3002144. doi: 10.1371/journal.pbio.3002144. eCollection 2023 Jun.
5
Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract.
Trends Food Sci Technol. 2023 Feb;132:40-53. doi: 10.1016/j.tifs.2022.12.012. Epub 2022 Dec 28.
6
Host specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome.
bioRxiv. 2022 Sep 22:2022.09.21.508960. doi: 10.1101/2022.09.21.508960.
8
Role of Stress Granules in Suppressing Viral Replication by the Infectious Bronchitis Virus Endoribonuclease.
J Virol. 2022 Jun 22;96(12):e0068622. doi: 10.1128/jvi.00686-22. Epub 2022 May 31.
9
Prediction of coronavirus 3C-like protease cleavage sites using machine-learning algorithms.
Virol Sin. 2022 Jun;37(3):437-444. doi: 10.1016/j.virs.2022.04.006. Epub 2022 May 2.
10
A Novel Potentially Recombinant Rodent Coronavirus with a Polybasic Cleavage Site in the Spike Protein.
J Virol. 2021 Oct 27;95(22):e0117321. doi: 10.1128/JVI.01173-21. Epub 2021 Aug 25.

本文引用的文献

2
Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9. doi: 10.1073/pnas.0808790106. Epub 2009 Feb 10.
6
Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.
J Virol. 2008 Sep;82(17):8647-55. doi: 10.1128/JVI.00298-08. Epub 2008 Jun 18.
7
8
Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.
J Virol. 2008 Mar;82(5):2515-27. doi: 10.1128/JVI.02114-07. Epub 2007 Dec 19.
9
Structural and functional analyses of the severe acute respiratory syndrome coronavirus endoribonuclease Nsp15.
J Biol Chem. 2008 Feb 8;283(6):3655-3664. doi: 10.1074/jbc.M708375200. Epub 2007 Nov 28.
10
Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease.
J Virol. 2007 Dec;81(24):13587-97. doi: 10.1128/JVI.00547-07. Epub 2007 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验