Suppr超能文献

一种全球传染性人类冠状病毒HCoV-HKU1的主要蛋白酶结构

Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.

作者信息

Zhao Qi, Li Shuang, Xue Fei, Zou Yilong, Chen Cheng, Bartlam Mark, Rao Zihe

机构信息

Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing, China.

出版信息

J Virol. 2008 Sep;82(17):8647-55. doi: 10.1128/JVI.00298-08. Epub 2008 Jun 18.

Abstract

The newly emergent human coronavirus HKU1 (HCoV-HKU1) was first identified in Hong Kong in 2005. Infection by HCoV-HKU1 occurs worldwide and causes syndromes such as the common cold, bronchitis, and pneumonia. The CoV main protease (M(pro)), which is a key enzyme in viral replication via the proteolytic processing of the replicase polyproteins, has been recognized as an attractive target for rational drug design. In this study, we report the structure of HCoV-HKU1 M(pro) in complex with a Michael acceptor, inhibitor N3. The structure of HCoV-HKU1 provides a high-quality model for group 2A CoVs, which are distinct from group 2B CoVs such as severe acute respiratory syndrome CoV. The structure, together with activity assays, supports the relative conservation at the P1 position that was discovered by sequencing the HCoV-HKU1 genome. Combined with structural data from other CoV M(pro)s, the HCoV-HKU1 M(pro) structure reported here provides insights into both substrate preference and the design of antivirals targeting CoVs.

摘要

新出现的人类冠状病毒HKU1(HCoV-HKU1)于2005年首次在香港被发现。HCoV-HKU1的感染在全球范围内发生,并引起诸如普通感冒、支气管炎和肺炎等综合征。冠状病毒主要蛋白酶(M(pro))是通过对复制酶多聚蛋白进行蛋白水解加工从而在病毒复制中起关键作用的一种酶,已被认为是合理药物设计的一个有吸引力的靶点。在本研究中,我们报道了HCoV-HKU1 M(pro)与迈克尔受体抑制剂N3结合的结构。HCoV-HKU1的结构为2A组冠状病毒提供了一个高质量模型,2A组冠状病毒与严重急性呼吸综合征冠状病毒等2B组冠状病毒不同。该结构与活性测定结果一起,支持了通过对HCoV-HKU1基因组测序所发现的P1位置的相对保守性。结合来自其他冠状病毒M(pro)的结构数据,本文报道的HCoV-HKU1 M(pro)结构为底物偏好性以及针对冠状病毒的抗病毒药物设计提供了见解。

相似文献

1
Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.
J Virol. 2008 Sep;82(17):8647-55. doi: 10.1128/JVI.00298-08. Epub 2008 Jun 18.
3
Coronavirus HKU1 and other coronavirus infections in Hong Kong.
J Clin Microbiol. 2006 Jun;44(6):2063-71. doi: 10.1128/JCM.02614-05.
5
Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.
J Virol. 2008 Mar;82(5):2515-27. doi: 10.1128/JVI.02114-07. Epub 2007 Dec 19.
6
Prevalence and molecular epidemiology of human coronavirus HKU1 in patients with acute respiratory illness.
J Med Virol. 2013 Feb;85(2):309-14. doi: 10.1002/jmv.23465. Epub 2012 Nov 14.
8
Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1.
J Virol. 2015 Sep;89(17):8816-27. doi: 10.1128/JVI.03737-14. Epub 2015 Jun 17.
10
Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses.
PLoS One. 2011;6(11):e27228. doi: 10.1371/journal.pone.0027228. Epub 2011 Nov 2.

引用本文的文献

1
Identification of Potent, Broad-Spectrum Coronavirus Main Protease Inhibitors for Pandemic Preparedness.
J Med Chem. 2024 Oct 10;67(19):17454-17471. doi: 10.1021/acs.jmedchem.4c01404. Epub 2024 Sep 27.
2
A Tale of Two Proteases: M and TMPRSS2 as Targets for COVID-19 Therapies.
Pharmaceuticals (Basel). 2023 Jun 2;16(6):834. doi: 10.3390/ph16060834.
4
Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro.
Nat Commun. 2022 Sep 8;13(1):5285. doi: 10.1038/s41467-022-32922-9.
6
The SARS-CoV-2 main protease (M): Structure, function, and emerging therapies for COVID-19.
MedComm (2020). 2022 Jul 14;3(3):e151. doi: 10.1002/mco2.151. eCollection 2022 Sep.
7
Review on development of potential inhibitors of SARS-CoV-2 main protease (M).
Futur J Pharm Sci. 2022;8(1):36. doi: 10.1186/s43094-022-00423-7. Epub 2022 Jun 21.
9
Repurposing dyphylline as a pan-coronavirus antiviral therapy.
Future Med Chem. 2022 May;14(10):685-699. doi: 10.4155/fmc-2021-0311. Epub 2022 Apr 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.
J Virol. 2008 Mar;82(5):2515-27. doi: 10.1128/JVI.02114-07. Epub 2007 Dec 19.
4
Review of bats and SARS.
Emerg Infect Dis. 2006 Dec;12(12):1834-40. doi: 10.3201/eid1212.060401.
5
Coronavirus HKU1 in an Italian pre-term infant with bronchiolitis.
J Clin Virol. 2007 Mar;38(3):251-3. doi: 10.1016/j.jcv.2006.11.014.
6
Clinical manifestations of human coronavirus NL63 infection in children in Taiwan.
Eur J Pediatr. 2008 Jan;167(1):75-80. doi: 10.1007/s00431-007-0429-8. Epub 2007 Feb 13.
7
Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients.
J Clin Virol. 2007 Mar;38(3):244-50. doi: 10.1016/j.jcv.2006.12.008. Epub 2007 Jan 10.
8
Drug design targeting the main protease, the Achilles' heel of coronaviruses.
Curr Pharm Des. 2006;12(35):4573-90. doi: 10.2174/138161206779010369.
9
Human Coronavirus-NL63 infections in Korean children, 2004-2006.
J Clin Virol. 2007 Jan;38(1):27-31. doi: 10.1016/j.jcv.2006.10.009. Epub 2006 Nov 29.
10
Blinded case-control study of the relationship between human coronavirus NL63 and Kawasaki syndrome.
J Infect Dis. 2006 Dec 15;194(12):1697-701. doi: 10.1086/509509. Epub 2006 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验