Suppr超能文献

体感系统中的多电极记录

Multielectrode Recordings in the Somatosensory System

作者信息

Wiest Michael, Thomson Eric, Meloy Jim

Abstract

A fundamental goal in systems neuroscience is to explain animal behavior in terms of the dynamics of neural ensembles. Multielectrode techniques greatly facilitate the approach toward this goal. Aside from the fact that each experiment provides a higher yield of data as compared to single-site recordings, some questions simply cannot be addressed using only one electrode at a time. For example, only multisite recordings can determine whether different neurons respond independently to stimuli, or covary from trial to trial. The purpose of this chapter is to review methods used in multielectrode studies of the rat somatosensory system, with an emphasis on the whisker system. We present a basic toolbox of methods we have used to probe the functions of populations of somatosensory neurons in a behavioral context. The basic toolbox includes techniques for applying controlled whisker stimuli, behavioral training in tactile discrimination tasks, multielectrode recordings, reversibly inactivating specific brain areas, and analysis of the ensemble neural data. These methods have already revealed fundamental properties of the somatosensory system that would have been difficult or impossible to uncover using single-electrode recordings. For example, cortical (Zhu and Connors, 1999; Ghazanfar and Nicolelis, 2001; Diamond et al., 1992; Ghazanfar et al., 2000; Schubert et al., 2001) and thalamic (Armstrong-James and Fox, 1987; Nicolelis and Chapin, 1994) neurons have large multiwhisker receptive fields that are dynamic over poststimulus time (Nicolelis and Chapin, 1994; Ghazanfar and Nicolelis, 1999; Ghazanfar et al., 2000). These data, together with observations of supralinear summation of multiwhisker inputs (Ghazanfar and Nicolelis, 1997; Shimegi, 2000), suggest that tactile receptive field dynamics function to integrate time-varying multiwhisker inputs (Ghazanfar and Nicolelis, 2001). For example, analysis of multineuron response data revealed additional stimulus-coding properties of somatosensory ensembles. S1 ensembles code stimulus location in single-neuron temporal patterns and the relative response latencies of their neurons, but not in single-trial covariations among the neurons (Nicolelis et al., 1998; Ghazanfar et al., 2000). In S2 of the primate, on the other hand, single-trial covariations among multiple neurons did contribute significantly to coding the location of a punctate stimulus (Nicolelis et al., 1998; Ghazanfar et al., 2000). Even in S1, the contribution of coordinated firing may increase with greater stimulus complexity, because multiple whisker stimuli lead to a higher prevalence of synchronous responses between neurons in the infragranular layers of S1 than in other layers (Zhang and Alloway, 2005). Combining methods for inactivating specific neural inputs with ensemble recordings led to the further conclusion that spatiotemporal RF properties of somatosensory neurons arise not only from intrinsic local properties of neurons and their neighbor connections, but rather from interactions among multiple levels of the somatosensory system. For example, recording thalamic tactile responses in the presence and absence of cortical feedback revealed that corticofugal projections contributed to both the short- and long-latency components of ventral posterior medial nucleus (VPM) responses (Krupa et al., 1999; Ghazanfar et al., 2001). These interlevel interactions were reflected in simultaneous recordings in trigeminal areas in brain stem, thalamus, and cortex, which revealed widespread oscillatory synchronization of neural firing (Nicolelis et al., 1995). The correlated activity remains even after transection of the facial nerve, which suggests that such synchronous activity is generated centrally. Although the high coherence among large populations of neurons associated with this oscillatory 7–12 Hz brain state suggested absence seizures to a number of authors (Marescaux et al., 1992; Shaw et al., 2006; Shaw, 2007), a direct test showed that rats respond robustly to mild tactile stimulation during bouts of 7–12 Hz oscillations in S1, contradicting the absence interpretation (Wiest and Nicolelis, 2003). Thus, widespread synchronized neural firing need not preclude perception; in fact, it can enhance aspects of sensory representation (Fontanini and Katz, 2006) as well as long-term plasticity (Erchova and Diamond, 2004). These demonstrations of fast interactions among neurons distributed across the somatosensory maps at multiple processing stages were paralleled by demonstrations of a tight coupling between the two hemispheres of S1 (Shuler et al., 2001; Wiest et al., 2005). This cross-talk challenges the classical conception of the S1 barrel cortex as an encoder for exclusively contralateral whisker activity and suggests the potential importance of bilateral interactions in S1 for whisker-guided discriminations (Krupa, 2001b; Shuler et al., 2002). Multielectrode recordings in different layers of S1 while rats performed a bilateral whisker-guided discrimination revealed that a feed-forward model of tactile signal processing cannot explain S1 response properties (Krupa et al., 2004). For example, firing rate modulations that began before tactile stimulation clearly could not be explained in terms of bottom-up propagation of a stimulus signal. Rather, other inputs to S1 must contribute to shaping the task-related responses. Similarly, tactile responses were found to vary significantly in different spontaneously occurring behavioral states (Nelson, 1996; Fanselow and Nicolelis, 1999; Moore et al., 1999; Nicolelis and Fanselow, 2002; Castro-Alamancos, 2004; Moore, 2004). These data collectively suggest that widely distributed neurons coordinate their activities on millisecond time scales, and that the functional connectivity among them can be quickly adjusted in different behavioral contexts. The preceding examples are meant to indicate the range of results that have already been achieved using multielectrode arrays (MEAs). In the following sections we present specific methods developed in the past 15 years. The examples have been selected to represent methods from each major phase of a typical study, from electrode design and surgical implantation, through ensemble recording involving somatosensory stimulation, behavioral monitoring, and reversible inactivation of specific brain areas, to analysis of the recorded many-neuron data.

摘要

系统神经科学的一个基本目标是根据神经集群的动力学来解释动物行为。多电极技术极大地推动了朝着这一目标的研究进程。除了与单电极记录相比,每个实验能提供更多的数据之外,有些问题仅使用一个电极是根本无法解决的。例如,只有多部位记录才能确定不同的神经元对刺激的反应是相互独立的,还是在不同试验中存在协变关系。本章的目的是回顾大鼠体感系统多电极研究中所使用的方法,重点是触须系统。我们展示了一个基本的方法工具箱,这些方法是我们在行为背景下用于探究体感神经元群体功能的。这个基本工具箱包括施加可控触须刺激的技术、触觉辨别任务中的行为训练、多电极记录、特定脑区的可逆失活以及神经集群数据的分析。这些方法已经揭示了体感系统的基本特性,而这些特性使用单电极记录很难或根本无法发现。例如,皮层(朱和康纳斯,1999年;加赞法尔和尼科莱利斯,2001年;戴蒙德等人,1992年;加赞法尔等人,2000年;舒伯特等人,2001年)和丘脑(阿姆斯特朗 - 詹姆斯和福克斯,1987年;尼科莱利斯和查平,1994年)神经元具有大的多触须感受野,这些感受野在刺激后时间内是动态变化的(尼科莱利斯和查平,1994年;加赞法尔和尼科莱利斯,1999年;加赞法尔等人,2000年)。这些数据,连同对多触须输入超线性总和的观察结果(加赞法尔和尼科莱利斯,1997年;岛木,2000年),表明触觉感受野动力学的作用是整合随时间变化的多触须输入(加赞法尔和尼科莱利斯,2001年)。例如,对多神经元反应数据的分析揭示了体感集群额外的刺激编码特性。初级体感皮层(S1)集群通过单个神经元的时间模式及其神经元的相对反应潜伏期来编码刺激位置,但不是通过神经元之间的单次试验协变关系来编码(尼科莱利斯等人,1998年;加赞法尔等人,2000年)。另一方面,在灵长类动物的次级体感皮层(S2)中,多个神经元之间的单次试验协变关系确实对点状刺激位置的编码有显著贡献(尼科莱利斯等人,1998年;加赞法尔等人,2000年)。即使在S1中,随着刺激复杂性的增加,协同放电的贡献可能会增加,因为多个触须刺激导致S1颗粒下层神经元之间同步反应的发生率高于其他层(张和阿洛韦,2005年)。将特定神经输入失活的方法与集群记录相结合,进一步得出结论:体感神经元的时空感受野特性不仅源于神经元的内在局部特性及其邻域连接,还源于体感系统多个层次之间的相互作用。例如,在有和没有皮层反馈的情况下记录丘脑触觉反应,结果表明皮质离心投射对腹后内侧核(VPM)反应的短潜伏期和长潜伏期成分都有贡献(克鲁帕等人,1999年;加赞法尔等人,2001年)。这些层次间的相互作用在脑干、丘脑和皮层的三叉神经区域的同步记录中得到体现,这些记录揭示了神经放电广泛的振荡同步(尼科莱利斯等人,1995年)。即使在切断面神经后,相关活动仍然存在,这表明这种同步活动是在中枢产生的。尽管大量神经元之间与这种7 - 12赫兹振荡脑状态相关的高相干性让一些作者认为这是失神发作(马雷斯科等人,1992年;肖等人,2006年;肖,2007年),但直接测试表明,在S1中7 - 12赫兹振荡期间,大鼠对轻度触觉刺激有强烈反应,这与失神发作的解释相矛盾(维斯特和尼科莱利斯,2003年)。因此,广泛的同步神经放电不一定会妨碍感知;事实上,它可以增强感觉表征(丰塔纳尼和卡茨,2006年)以及长期可塑性(埃尔乔娃和戴蒙德,2004年)。在多个处理阶段分布在体感图谱上的神经元之间快速相互作用的这些证明,与S1两个半球之间紧密耦合的证明是并行的(舒勒等人,2001年;维斯特等人,2005年)。这种相互作用挑战了经典观念中S1桶状皮层仅作为对侧触须活动编码器的观点,并表明S1中双侧相互作用对于触须引导的辨别可能具有重要意义(克鲁帕,2001b;舒勒等人,2002年)。在大鼠进行双侧触须引导辨别时,对S1不同层进行多电极记录发现,触觉信号处理的前馈模型无法解释S1的反应特性(克鲁帕等人,2004年)。例如,在触觉刺激之前开始的放电率调制显然无法用刺激信号的自下而上传播来解释。相反,S1的其他输入必须对塑造与任务相关的反应做出贡献。同样,在不同的自发行为状态下,触觉反应也有显著差异(纳尔逊,1996年;范斯洛和尼科莱利斯,1999年;摩尔等人,1999年;尼科莱利斯和范斯洛,2002年;卡斯特罗 - 阿拉曼科斯,2004年;摩尔,2004年)。这些数据共同表明,广泛分布的神经元在毫秒时间尺度上协调它们的活动,并且它们之间的功能连接性可以在不同的行为背景下快速调整。前面的例子旨在说明使用多电极阵列(MEA)已经取得的一系列研究成果。在接下来的部分中,我们将介绍过去15年中开发的具体方法。这些例子被选来代表典型研究每个主要阶段的方法,从电极设计和手术植入,到涉及体感刺激、行为监测和特定脑区可逆失活的集群记录,再到对记录的多神经元数据的分析。

相似文献

5
Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats.
J Neurophysiol. 1997 Sep;78(3):1691-706. doi: 10.1152/jn.1997.78.3.1691.
8
Encoding of tactile stimulus location by somatosensory thalamocortical ensembles.
J Neurosci. 2000 May 15;20(10):3761-75. doi: 10.1523/JNEUROSCI.20-10-03761.2000.
9
Neural Coding of Whisker-Mediated Touch in Primary Somatosensory Cortex Is Altered Following Early Blindness.
J Neurosci. 2018 Jul 4;38(27):6172-6189. doi: 10.1523/JNEUROSCI.0066-18.2018. Epub 2018 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验