Suppr超能文献

优化电阻图案的热毛细驱动:气泡和液滴的置换、切换和捕获。

Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping.

机构信息

SATIE, ENS-Cachan Bretagne, CNRS, UEB, av Robert Schuman, F-35170 Bruz, France.

出版信息

Lab Chip. 2010 Jul 21;10(14):1835-40. doi: 10.1039/c001900c. Epub 2010 May 5.

Abstract

We report a novel method for bubble or droplet displacement, capture and switching within a bifurcation channel for applications in digital microfluidics based on the Marangoni effect, i.e. the appearance of thermocapillary tangential interface stresses stemming from local surface tension variations. The specificity of the reported actuation is that heating is provided by an optimized resistor pattern (B. Selva, J. Marchalot and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, J. Micromech. Microeng., 2009, 19, 065002) leading to a constant temperature gradient along a microfluidic cavity. In this context, bubbles or droplets to be actuated entail a surface force originating from the thermal Marangoni effect. This actuator has been characterized (B. Selva, I. Cantat, and M.-C. Jullien, Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress, preprint, 2009) and it was found that the bubble/droplet (called further element) is driven toward a high surface tension region, i.e. toward cold region, and the element velocity increases while decreasing the cavity thickness. Taking advantage of these properties three applications are presented: (1) element displacement, (2) element switching, detailed in a given range of working, in which elements are redirected towards a specific evacuation, (3) a system able to trap, and consequently stop on demand, the elements on an alveolus structure while the continuous phase is still flowing. The strength of this method lies in its simplicity: single layer system, in situ heating leading to a high level of integration, low power consumption (P < 0.4 W), low applied voltage (about 10 V), and finally this system is able to manipulate elements within a flow velocity up to 1 cm s(-1).

摘要

我们报告了一种在分岔通道内实现气泡或液滴置换、捕获和切换的新方法,该方法基于 Marangoni 效应,即源自局部表面张力变化的热毛细切向界面应力的出现,应用于基于数字微流控的技术中。所报告的致动的特殊性在于,通过优化的电阻器图案(B. Selva、J. Marchalot 和 M.-C. Jullien,An optimized resistor pattern for temperature gradient control in microfluidics,J. Micromech. Microeng.,2009,19,065002)提供加热,从而沿微流腔产生恒定的温度梯度。在这种情况下,要进行操作的气泡或液滴需要源自热 Marangoni 效应的表面力。该致动器已经过表征(B. Selva、I. Cantat 和 M.-C. Jullien,Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress,preprint,2009),并且发现气泡/液滴(进一步称为元件)被驱动到具有较高表面张力的区域,即冷区域,并且元件速度随着腔厚度的减小而增加。利用这些特性,展示了三种应用:(1)元件位移,(2)元件切换,在特定工作范围内详细说明,其中元件被重新引导到特定的排空,(3)一种能够在连续相仍在流动时捕获并按需停止肺泡结构上的元件的系统。该方法的优点在于其简单性:单层系统,原位加热可实现高度集成,低功耗(P <0.4 W),低应用电压(约 10 V),最后,该系统能够在流速高达 1 cm s(-1)的情况下操纵元件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验