Suppr超能文献

通过螯合环几何形状控制基于金属离子尺寸的选择性。2,2'-联咪唑的金属离子络合性质。

Control of metal ion size-based selectivity through chelate ring geometry. metal ion complexing properties of 2,2'-biimidazole.

机构信息

Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA.

出版信息

Inorg Chem. 2010 Jun 7;49(11):5033-9. doi: 10.1021/ic100131z.

Abstract

Some metal ion complexing properties of 2,2'-biimidazole (BIM) are presented. The ligand BIM forms minimum steric strain complexes with hypothetical metal ions with M-N (metal-nitrogen) bond lengths of 4.2 A, in contrast to more usual ligands such as bipy (2,2'-bipyridyl) that prefer metal ions with M-N bond lengths of 2.51 A. This metal ion size-based preference of BIM suggests that ligands with such architecture could be used to produce selectivity (differences in log K(1)) for very large metal ions. To test this hypothesis, the crystal structure of Pb(BIM)(2)(ClO(4))(2) (1) was determined as the first example of a complex of BIM with a large metal ion. In addition, formation constants (log K(1)) for BIM with metal ions ranging from the very small Cu(II) to the very large Ba(II) ion were determined to examine the effect of the architecture of BIM on metal ion selectivity. The structure of 1 gave: Triclinic, P1, a = 8.314(2) A, b = 8.677(2) A, c = 14.181(3) (A), alpha = 91.143(3) degrees , beta = 104.066(2) degrees , gamma = 106.044(3) degrees , V = 949.5(4) A(3), Z = 1, R = 0.030. Pb(II) in 1 is eight-coordinate, with relatively short Pb-N bonds to the two BIM ligands ranging from 2.366(5) to 2.665(5) A, while the four Pb-O bonds are very long at 2.826(5) to 3.123(5) A. This is typical of the structure of Pb(II) complexes that have a stereochemically active lone pair of electrons, which is postulated to be situated in the vicinity of the long Pb-O bonds. The geometry of the chelate rings formed by BIM with Pb(II) in 1 is analyzed, and it is shown that these are closer in structure to the minimum-strain chelate ring formed by BIM with a very large metal ion than is the case for structures reported in the literature with smaller metal ions. The formation constants (log K(1)) determined for BIM at 25 degrees C in 0.1 M NaClO(4) by UV-visible spectroscopy are as follows: Cu(II), 6.35; Ni(II), 4.89; Zn(II), 3.42; Cd(II), 3.86; Ca(II), -0.2; Pb(II), 3.2; Ba(II), 0.2. The log K(1) values for BIM complexes show that, as expected from the geometry of the chelate ring formed by BIM, the complexes of BIM with small metal ions such as Cu(II) are considerably weaker than with ligands such as bipy, where the ligand architecture is more favorable for forming chelate rings with small metal ions. In contrast, for very large metal ions such as Pb(II) or Ba(II), the log K(1) values for BIM complexes are larger than for bipy. The use of ligand architecture in BIM-type ligands to engineer selectivity for very large metal ions is discussed. Some fluorescence results for BIM and its complexes are presented. BIM itself fluoresces very strongly, while all of its complexes except for Ca(II) show diminished fluorescence intensity, ranging from small shifts and decreases for Ba(II) to very large decreases for Cd(II), which may be due to the distortion of the ligand geometry in its complexes by metal ions that are too small for low-strain coordination with BIM.

摘要

呈现了 2,2'-联咪唑(BIM)的一些金属离子络合性质。配体 BIM 与假设的金属离子形成最小空间应变配合物,具有 4.2Å 的 M-N(金属-氮)键长,与更喜欢具有 2.51Å 的 M-N 键长的更常见配体如 bipy(2,2'-联吡啶)形成对比。这种基于金属离子大小的 BIM 偏好表明,具有这种结构的配体可以用于产生对非常大的金属离子的选择性(log K(1) 的差异)。为了测试这一假设,确定了 [Pb(BIM)(2)(ClO4)(2)]2(1) 的晶体结构,作为 BIM 与大金属离子形成的第一个配合物的例子。此外,还确定了 BIM 与从非常小的 Cu(II)到非常大的 Ba(II)离子的金属离子的形成常数(log K(1)),以研究 BIM 结构对金属离子选择性的影响。1 的结构给出:三斜晶系,P1,a=8.314(2)Å,b=8.677(2)Å,c=14.181(3)Å,α=91.143(3)°,β=104.066(2)°,γ=106.044(3)°,V=949.5(4)Å3,Z=1,R=0.030。1 中的 Pb(II)是八配位的,与两个 BIM 配体的相对较短的 Pb-N 键长范围为 2.366(5)至 2.665(5)Å,而四个 Pb-O 键非常长,为 2.826(5)至 3.123(5)Å。这是具有立体化学活性孤对电子的 Pb(II)配合物的典型结构,据推测该孤对电子位于长 Pb-O 键附近。分析了由 BIM 与 1 中的 Pb(II)形成的螯合环的几何形状,表明这些螯合环的结构与与非常大的金属离子形成的 BIM 的最小应变螯合环更接近,而与文献中报道的与较小金属离子形成的结构则不接近。在 0.1M NaClO4 中,通过紫外-可见光谱在 25°C 下确定的 BIM 的形成常数(log K(1))如下:Cu(II),6.35;Ni(II),4.89;Zn(II),3.42;Cd(II),3.86;Ca(II),-0.2;Pb(II),3.2;Ba(II),0.2。BIM 配合物的 log K(1)值表明,正如由 BIM 形成的螯合环的几何形状所预期的那样,BIM 与小金属离子如 Cu(II)的配合物比与 bipy 等配体弱得多,因为配体结构更有利于与小金属离子形成螯合环。相比之下,对于非常大的金属离子如 Pb(II)或 Ba(II),BIM 配合物的 log K(1)值大于 bipy。讨论了在 BIM 型配体中使用配体结构来设计对非常大的金属离子的选择性。还介绍了一些 BIM 及其配合物的荧光结果。BIM 本身荧光强度非常强,而除了 Ca(II)之外的所有配合物的荧光强度都减弱了,范围从 Ba(II)的小位移和减小到 Cd(II)的非常大减小,这可能是由于金属离子太小而不能与 BIM 进行低应变配位,导致配体几何形状在其配合物中发生扭曲。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验