Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
Environ Sci Technol. 2010 Jun 1;44(11):4288-94. doi: 10.1021/es100051q.
Palladized zero-valent iron nanoparticles have been frequently employed to achieve enhanced treatment of halogenated organic compounds; however, no detailed study has been published on their structures, especially the location and distribution of palladium within the nanoparticles. In this work, the structural evolution of palladized nanoscale iron particles (Pd-nZVI, with 1.5 wt % Pd) was examined using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray energy dispersive spectroscopy (XEDS) techniques. The STEM-XEDS technique enables direct visualization of the nanoscale structural and compositional changes of the bimetallic particles. For a freshly made Pd-nZVI sample, the particles consist of a metallic iron core and a thin amorphous oxide shell, and Pd is observed to form 2-5 nm islands decorating the outer surface of the nanoparticles. Upon exposure to water, Pd-nZVI undergoes substantial morphological and structural changes. STEM-XEDS elemental maps show that Pd infiltrates through the oxide layer to the metallic iron interface, which is accompanied by oxidation and outward diffusion of the iron species. Within a 24 h period, Pd is completely buried underneath an extensive iron oxide matrix, and a fraction of the nanoparticles exhibits a hollowed-out morphology with no metallic iron remaining. The microstructural variations observed concur with the reactivity data, which shows that the aged bimetallic particles display an 80% decrease in dechlorination rate of trichloroethene (TCE) compared to that of the fresh particles. These findings shed new light on the function of palladium in hydrodechlorination reactions, nZVI aging and deactivation, and the longevity of Pd-nZVI nanoparticles for in situ remediation.
负载钯零价铁纳米颗粒已被广泛用于增强卤代有机化合物的处理效果;然而,关于其结构,尤其是钯在纳米颗粒中的位置和分布,尚未有详细的研究报道。在这项工作中,采用 X 射线光电子能谱(XPS)、扫描透射电子显微镜(STEM)和 X 射线能量色散光谱(XEDS)技术研究了负载钯纳米尺度铁颗粒(Pd-nZVI,钯负载量为 1.5wt%)的结构演变。STEM-XEDS 技术可直接观察双金属颗粒的纳米尺度结构和组成变化。对于新制备的 Pd-nZVI 样品,颗粒由金属铁核和薄的非晶态氧化物壳组成,并且观察到 Pd 形成 2-5nm 的岛状结构,装饰在纳米颗粒的外表面。在水暴露下,Pd-nZVI 经历了显著的形态和结构变化。STEM-XEDS 元素图谱表明,Pd 渗透过氧化物层到达金属铁界面,伴随着铁物种的氧化和向外扩散。在 24 小时内,Pd 完全被广泛的氧化铁基质所覆盖,并且一部分纳米颗粒呈现出中空形态,没有残留的金属铁。观察到的微观结构变化与反应性数据一致,表明老化的双金属颗粒的三氯乙烯(TCE)脱氯速率比新鲜颗粒降低了 80%。这些发现为钯在加氢脱氯反应、nZVI 老化和失活以及 Pd-nZVI 纳米颗粒原位修复的耐久性中的作用提供了新的认识。