Suppr超能文献

血管紧张素II通过蛋白激酶C(α)依赖性烟酰胺腺嘌呤二核苷酸磷酸氧化酶激活刺激髓袢升支粗段超氧化物生成。

Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation.

作者信息

Herrera Marcela, Silva Guillermo B, Garvin Jeffrey L

机构信息

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.

出版信息

J Biol Chem. 2010 Jul 9;285(28):21323-8. doi: 10.1074/jbc.M110.109157. Epub 2010 May 6.

Abstract

Angiotensin II (Ang II) stimulates thick ascending limb (TAL) O₂ production, but the receptor(s) and signaling mechanism(s)involved are unknown. The effect of Ang II on O₂. is generally attributed to the AT₁receptor. In some cells, Ang II stimulates protein kinase C (PKC), whose α isoform (PKCα) can activate NADPH oxidase. We hypothesized that in TALs, Ang II stimulates O₂. via AT₁and PKC α-dependent NADPH oxidase activation.In rat TALs, 1 nM Ang II stimulated O₂. from 0.760.17 to 1.97 0.21 nmol/min/mg (p < 0.001). An AT₁antagonist blocked the stimulatory effect of Ang II on O₂. (0.87 0.25 nmol/min/mg; p < 0.006), whereas an AT₂ antagonist had no effect (2.16 0.133 nmol/min/mg; p < 0.05 versus vehicle). Apocynin, an NADPH oxidase inhibitor, blocked Ang II-stimulated O₂by 90% (p <0.01). Ang II failed to stimulate O₂. in TALs from p47(phox) -/- mice (p < 0.02). Monitored by fluorescence resonance energy transfer, Ang II increased PKC activity from 0.02 0.03 to 0.13 0.02 arbitrary units (p < 0.03). A general PKC inhibitor, GF109203X, blocked the effect of Ang II on O₂(1.47 +/- .21 versus 2.72 +/- .47 nmol/min/mg with Ang II alone; p < 0.03). A PKCα- and ß-selective inhibitor, Gö6976, also blocked the stimulatory effect of Ang II on O₂. (0.59 +/- 0.15 versus 2.05 +/- 0.28 nmol/min/mg with Ang II alone; p < 0.001). To distinguish between PKC α and PKC ß, we used tubules expressing dominant-negative PKC α or -ß. In control TALs, Ang II stimulated O2. by 2.17 0.44 nmol/min/mg (p < 0.011). In tubules expressing dominant-negative PKC α, Ang II failed to stimulate O2. (change: -0.30 +/- 0.27 nmol/min/mg). In tubules expressing dominant-negative PKC ß1, Ang II stimulated O2. by 2.080.69 nmol/min/mg (p < 0.002). We conclude that Ang II stimulates TAL O₂production via activation of AT₁receptors and PKC α-dependent NADPH oxidase.

摘要

血管紧张素II(Ang II)刺激髓袢升支粗段(TAL)的氧生成,但相关的受体和信号传导机制尚不清楚。Ang II对氧的作用通常归因于AT₁受体。在某些细胞中,Ang II刺激蛋白激酶C(PKC),其α亚型(PKCα)可激活NADPH氧化酶。我们推测,在TAL中,Ang II通过AT₁和PKCα依赖性NADPH氧化酶激活来刺激氧生成。在大鼠TAL中,1 nM Ang II将氧生成速率从0.76±0.17提高至1.97±0.21 nmol/分钟/毫克(p<0.001)。一种AT₁拮抗剂可阻断Ang II对氧生成的刺激作用(0.87±0.25 nmol/分钟/毫克;p<0.006),而一种AT₂拮抗剂则无作用(2.16±0.133 nmol/分钟/毫克;与溶剂对照相比p<0.05)。NADPH氧化酶抑制剂阿朴吗啡可阻断Ang II刺激的氧生成的90%(p<0.01)。Ang II未能刺激p47(phox)-/-小鼠的TAL中的氧生成(p<0.02)。通过荧光共振能量转移监测,Ang II使PKC活性从0.02±0.03增加至0.13±0.02任意单位(p<0.03)。一种通用的PKC抑制剂GF109203X可阻断Ang II对氧生成的作用(1.47±0.21对比单独使用Ang II时的2.72±0.47 nmol/分钟/毫克;p<0.03)。一种PKCα和β选择性抑制剂Gö6976也可阻断Ang II对氧生成的刺激作用(0.59±0.15对比单独使用Ang II时的2.05±0.28 nmol/分钟/毫克;p<0.001)。为区分PKCα和PKCβ,我们使用了表达显性负性PKCα或-β的肾小管。在对照TAL中,Ang II刺激氧生成速率为2.17±0.44 nmol/分钟/毫克(p<0.011)。在表达显性负性PKCα的肾小管中,Ang II未能刺激氧生成(变化:-0.30±0.27 nmol/分钟/毫克)。在表达显性负性PKCβ1的肾小管中,Ang II刺激氧生成速率为2.08±0.69 nmol/分钟/毫克(p<0.002)。我们得出结论,Ang II通过激活AT₁受体和PKCα依赖性NADPH氧化酶来刺激TAL的氧生成。

相似文献

1
Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation.
J Biol Chem. 2010 Jul 9;285(28):21323-8. doi: 10.1074/jbc.M110.109157. Epub 2010 May 6.
3
PKC-alpha mediates flow-stimulated superoxide production in thick ascending limbs.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F885-91. doi: 10.1152/ajprenal.00543.2009. Epub 2010 Jan 6.
4
Endogenous flow-induced superoxide stimulates Na/H exchange activity via PKC in thick ascending limbs.
Am J Physiol Renal Physiol. 2014 Oct 1;307(7):F800-5. doi: 10.1152/ajprenal.00260.2014. Epub 2014 Jul 30.
5
Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb.
Hypertension. 2008 Dec;52(6):1091-8. doi: 10.1161/HYPERTENSIONAHA.108.120212. Epub 2008 Nov 10.
6
Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4.
Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C781-9. doi: 10.1152/ajpcell.00457.2011. Epub 2012 Aug 8.
8
Dietary fructose enhances angiotensin II-stimulated Na transport via activation of PKC-α in renal proximal tubules.
Am J Physiol Renal Physiol. 2020 Jun 1;318(6):F1513-F1519. doi: 10.1152/ajprenal.00543.2019. Epub 2020 May 11.
9
NADPH oxidase and PKC contribute to increased Na transport by the thick ascending limb during type 1 diabetes.
Hypertension. 2012 Feb;59(2):431-6. doi: 10.1161/HYPERTENSIONAHA.111.184796. Epub 2011 Dec 27.
10
Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.
Am J Physiol Cell Physiol. 2009 Apr;296(4):C693-700. doi: 10.1152/ajpcell.00648.2008. Epub 2009 Feb 4.

引用本文的文献

1
Angiotensin II-stimulated proximal nephron superoxide production and fructose-induced salt-sensitive hypertension.
Am J Physiol Renal Physiol. 2024 Feb 1;326(2):F249-F256. doi: 10.1152/ajprenal.00289.2023. Epub 2023 Dec 7.
2
Mechanisms of decreased tubular flow-induced nitric oxide in Dahl salt-sensitive rat thick ascending limbs.
Am J Physiol Renal Physiol. 2021 Sep 1;321(3):F369-F377. doi: 10.1152/ajprenal.00124.2021. Epub 2021 Jul 26.
3
Angiotensin II-induced superoxide and decreased glutathione in proximal tubules: effect of dietary fructose.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F183-F192. doi: 10.1152/ajprenal.00462.2019. Epub 2019 Nov 25.
4
Effects of reactive oxygen species on renal tubular transport.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F444-F455. doi: 10.1152/ajprenal.00604.2018. Epub 2019 Jun 19.
5
Superoxide increases surface NKCC2 in the rat thick ascending limbs via PKC.
Am J Physiol Renal Physiol. 2019 Jul 1;317(1):F99-F106. doi: 10.1152/ajprenal.00232.2018. Epub 2019 May 15.
6
Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension.
Physiol Rev. 2019 Jan 1;99(1):235-309. doi: 10.1152/physrev.00055.2017.
7
Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction.
Kidney Dis (Basel). 2018 Jun;4(2):83-94. doi: 10.1159/000488242. Epub 2018 May 22.
8
Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration.
Front Aging Neurosci. 2017 May 3;9:129. doi: 10.3389/fnagi.2017.00129. eCollection 2017.
9
Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.
Antioxidants (Basel). 2017 Mar 23;6(2):23. doi: 10.3390/antiox6020023.
10
Redox regulation of the actin cytoskeleton and its role in the vascular system.
Free Radic Biol Med. 2017 Aug;109:84-107. doi: 10.1016/j.freeradbiomed.2017.03.004. Epub 2017 Mar 8.

本文引用的文献

2
NOX2 is the primary source of angiotensin II-induced superoxide in the macula densa.
Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R707-12. doi: 10.1152/ajpregu.00762.2009. Epub 2010 Jan 6.
3
PKC-alpha mediates flow-stimulated superoxide production in thick ascending limbs.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F885-91. doi: 10.1152/ajprenal.00543.2009. Epub 2010 Jan 6.
4
Rac1 mediates NaCl-induced superoxide generation in the thick ascending limb.
Am J Physiol Renal Physiol. 2010 Feb;298(2):F421-5. doi: 10.1152/ajprenal.00472.2009. Epub 2009 Nov 18.
5
Antioxidant treatment with tempol and apocynin prevents endothelial dysfunction and development of renovascular hypertension.
Am J Hypertens. 2009 Dec;22(12):1242-9. doi: 10.1038/ajh.2009.186. Epub 2009 Sep 24.
6
PKC-dependent superoxide production by the renal medullary thick ascending limb from diabetic rats.
Am J Physiol Renal Physiol. 2009 Nov;297(5):F1220-8. doi: 10.1152/ajprenal.00314.2009. Epub 2009 Sep 9.
7
Functions and regulatory mechanisms of Gq-signaling pathways.
Neurosignals. 2009;17(1):42-54. doi: 10.1159/000186689. Epub 2009 Feb 12.
8
Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb.
Hypertension. 2008 Dec;52(6):1091-8. doi: 10.1161/HYPERTENSIONAHA.108.120212. Epub 2008 Nov 10.
9
Renal medullary oxidative stress, pressure-natriuresis, and hypertension.
Hypertension. 2008 Nov;52(5):777-86. doi: 10.1161/HYPERTENSIONAHA.107.092858. Epub 2008 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验