Suppr超能文献

心脏骤停后电子传递活性和活性氧生成的早期线粒体功能障碍。

Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest.

机构信息

Center for Resuscitation Science, Department of Emergency Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Crit Care Med. 2008 Nov;36(11 Suppl):S447-53. doi: 10.1097/ccm.0b013e31818a8a51.

Abstract

OBJECTIVE

Mitochondrial biology appears central to many conditions that progress to death but remains poorly characterized after cardiac arrest. Mitochondrial dysfunction in electron transfer and reactive oxygen species leakage during ischemia may lead to downstream events including mitochondrial protein oxidation, tyrosine nitrosylation, cytochrome c loss, and eventual death. We sought to better define early fixed alterations in these mitochondrial functions after whole animal cardiac arrest.

METHODS

We used a murine model of 8 mins of untreated KCl-induced cardiac arrest followed by resuscitation and return of spontaneous circulation to study mitochondrial functions in four groups of animals: 1) after 8 min cardiac arrest (CA8) but no resuscitation, 2) 30 min postreturn of spontaneous circulation (R30), 3) 60 min postreturn of spontaneous circulation (R60), and in 4) shams. Heart mitochondria were immediately harvested, isolated, and stored at -80 degrees C for later spectrophotometric measurements of electron transfer activities and reactive oxygen species leakage using appropriate substrates and inhibitors. Mitochondrial cytochrome c content and tyrosine nitration were analyzed by Western blot and densitometry.

RESULTS

A significant reactive oxygen species leakage from complex I was evident after just 8 min of cardiac arrest (CA8 group, p < .05), which was followed by a progressive reduction in complex I electron transfer activity (CA8 > R30 > R60). In contrast, complex II and II-III activities appeared more resistant to ischemia at the time points evaluated. Early changes in a approximately 50 kDa and approximately 25 kDa protein were observed in tyrosine nitration along with a loss of cytochrome c.

CONCLUSIONS

A relatively "orderly" process of mitochondrial dysfunction progresses during ischemia and reperfusion. Changes in mitochondrial reactive oxygen species generation and electron transfer from complex I occur along with tyrosine nitrosylation and loss of cytochrome c; these may represent important new targets for future human therapies.

摘要

目的

线粒体生物学似乎是许多导致死亡的疾病的核心,但在心脏骤停后仍未得到充分描述。在缺血期间,电子传递和活性氧物种漏出现象可能导致线粒体蛋白氧化、酪氨酸硝化、细胞色素 c 丧失以及最终死亡等下游事件。我们试图更好地定义心脏骤停后整个动物模型中线粒体功能的早期固定改变。

方法

我们使用未经处理的 KCl 诱导的 8 分钟心脏骤停后复苏并恢复自主循环的小鼠模型,研究了四组动物的线粒体功能:1)8 分钟心脏骤停(CA8)但未复苏,2)自主循环恢复后 30 分钟(R30),3)自主循环恢复后 60 分钟(R60),以及 4)假手术组。心脏线粒体立即收获、分离,并储存在-80°C 下,用于以后使用适当的底物和抑制剂测量电子传递活性和活性氧物种漏出现象。线粒体细胞色素 c 含量和酪氨酸硝化通过 Western blot 和密度计进行分析。

结果

仅在心脏骤停 8 分钟后就出现了明显的来自复合体 I 的活性氧物种漏(CA8 组,p <.05),随后复合体 I 电子传递活性逐渐降低(CA8 > R30 > R60)。相比之下,在评估的时间点,复合体 II 和 II-III 活性对缺血似乎更具抵抗力。在酪氨酸硝化过程中,还观察到大约 50 kDa 和大约 25 kDa 蛋白的早期变化,同时细胞色素 c 丧失。

结论

在缺血和再灌注期间,线粒体功能障碍会经历一个相对“有序”的过程。线粒体活性氧物种生成和来自复合体 I 的电子传递的变化伴随着酪氨酸硝化和细胞色素 c 丧失;这些可能是未来人类治疗的重要新靶点。

相似文献

3
Blockade of electron transport during ischemia protects cardiac mitochondria.
J Biol Chem. 2004 Nov 12;279(46):47961-7. doi: 10.1074/jbc.M409720200. Epub 2004 Sep 3.
4
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.
6
Targeting mitochondria for resuscitation from cardiac arrest.
Crit Care Med. 2008 Nov;36(11 Suppl):S440-6. doi: 10.1097/ccm.0b013e31818a89f4.
7
Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation.
Biomed Pharmacother. 2021 Aug;140:111743. doi: 10.1016/j.biopha.2021.111743. Epub 2021 May 18.
8
Preservation of mitochondrial function with cardiopulmonary resuscitation in prolonged cardiac arrest in rats.
J Mol Cell Cardiol. 2009 Dec;47(6):789-97. doi: 10.1016/j.yjmcc.2009.09.003. Epub 2009 Sep 12.

引用本文的文献

5
Oxygen metabolism after cardiac arrest: Patterns and associations with survival.
Resusc Plus. 2024 May 23;19:100667. doi: 10.1016/j.resplu.2024.100667. eCollection 2024 Sep.
6
Cardiac arrest, stony heart, and cardiopulmonary resuscitation: An updated revisit.
World J Cardiol. 2024 Mar 26;16(3):126-136. doi: 10.4330/wjc.v16.i3.126.
7
Immune cell expression patterns of CD39/CD73 ectonucleotidases in rodent models of cardiac arrest and resuscitation.
Front Immunol. 2024 Mar 13;15:1362858. doi: 10.3389/fimmu.2024.1362858. eCollection 2024.

本文引用的文献

2
Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation.
J Biol Chem. 2007 Nov 9;282(45):32640-54. doi: 10.1074/jbc.M702294200. Epub 2007 Sep 11.
3
Oxidation-reduction states of NADH in vivo: from animals to clinical use.
Mitochondrion. 2007 Sep;7(5):330-9. doi: 10.1016/j.mito.2007.05.001. Epub 2007 May 10.
4
Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1654-61. doi: 10.1152/ajpheart.01378.2006. Epub 2007 Jun 8.
5
Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.
Crit Care Med. 2007 Jul;35(7):1709-16. doi: 10.1097/01.CCM.0000269209.53450.EC.
6
Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival.
Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H767-75. doi: 10.1152/ajpheart.00468.2006. Epub 2006 Oct 13.
7
Methoxychlor inhibits brain mitochondrial respiration and increases hydrogen peroxide production and CREB phosphorylation.
Toxicol Sci. 2005 Dec;88(2):495-504. doi: 10.1093/toxsci/kfi334. Epub 2005 Sep 21.
9
Caspase-dependent cytochrome c release and cell death in chick cardiomyocytes after simulated ischemia-reperfusion.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2280-6. doi: 10.1152/ajpheart.01063.2003. Epub 2004 Feb 19.
10
New concepts in reactive oxygen species and cardiovascular reperfusion physiology.
Cardiovasc Res. 2004 Feb 15;61(3):461-70. doi: 10.1016/j.cardiores.2003.10.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验