Zhang Pan-Pan, Yu Jing-Ran, Ding Jia-Yu, Lin Wei-Hai, Chen Zhen, Shao Wei, Wang Shu-Chang, Chen Yi-Le, Li Yi, Gong Qi-Han, Xue Ming, Chen Xiao-Ming
School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, Sun Yat-sen University Guangzhou 510275 China
Fundamental Science & Advanced Technology Lab, PetroChina Petrochemical Research Institute Beijing 102200 China
Chem Sci. 2025 Jul 19. doi: 10.1039/d5sc04212g.
The efficient separation of hexane isomers is a crucial process in the petrochemical industry. Mixed-matrix membranes (MMMs) hold tremendous potential for hexane isomer separation. However, maintaining their continuity at high filler loading remains a substantial challenge. Here, UiO-66/PP mixed-matrix membranes are fabricated an confined growth synthesis strategy that achieves an exceptional filler loading of 72.9 wt%. The resulting UiO-66/PP-(96) membrane maintains structural continuity while effectively discriminating linear and mono-branched hexane isomers from their di-branched counterparts, exhibiting a flux of 473.5 g m h and a separation factor of 4.53 for -hexane/2,2-dimethylbutane mixtures. Remarkably, this membrane enriches -hexane content from 50.0 wt% in the feed to 81.9 wt% in the permeate through a single processing stage, while retaining robust performance across various hexane isomer combinations. These characteristics highlight its potential for extracting linear alkanes to enhance the gasoline research octane number (RON). Molecular dynamics (MD) simulations corroborate these findings, revealing faster transport kinetics for -hexane compared to branched isomers. This straightforward synthesis approach presented herein significantly broadens the avenues for the advancement of MOF-based mixed-matrix membranes in petrochemical separation applications.
己烷异构体的高效分离是石化行业中的关键过程。混合基质膜(MMMs)在己烷异构体分离方面具有巨大潜力。然而,在高填料负载量下保持其连续性仍然是一项重大挑战。在此,采用受限生长合成策略制备了UiO-66/PP混合基质膜,该策略实现了72.9 wt%的超高填料负载量。所得的UiO-66/PP-(96)膜保持了结构连续性,同时能有效区分直链和单支链己烷异构体与双支链己烷异构体,对于正己烷/2,2-二甲基丁烷混合物,其通量为473.5 g m⁻² h⁻¹,分离因子为4.53。值得注意的是,该膜通过单一处理阶段将正己烷含量从进料中的50.0 wt%富集到渗透物中的81.9 wt%,同时在各种己烷异构体组合中都保持了强大的性能。这些特性突出了其在提取直链烷烃以提高汽油研究法辛烷值(RON)方面的潜力。分子动力学(MD)模拟证实了这些发现,揭示了正己烷相比支链异构体具有更快的传输动力学。本文提出的这种简单合成方法显著拓宽了基于金属有机框架(MOF)的混合基质膜在石化分离应用中的发展途径。