Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, Rennes, France.
J Contam Hydrol. 2011 Mar 1;120-121:89-98. doi: 10.1016/j.jconhyd.2010.03.004. Epub 2010 Apr 14.
Transport in subsurface environments is conditioned by physical and chemical processes in interaction, with advection and dispersion being the most common physical processes and sorption the most common chemical reaction. Existing numerical approaches become time-consuming in highly-heterogeneous porous media. In this paper, we discuss a new efficient Lagrangian method for advection-dominated transport conditions. Modified from the active-walker approach, this method comprises dividing the aqueous phase into elementary volumes moving with the flow and interacting with the solid phase. Avoiding numerical diffusion, the method remains efficient whatever the velocity field by adapting the elementary volume transit times to the local velocity so that mesh cells are crossed in a single numerical time step. The method is flexible since a decoupling of the physical and chemical processes at the elementary volume scale, i.e. at the lowest scale considered, is achieved. We implement and validate the approach to the specific case of the nonlinear Freundlich kinetic sorption. The method is relevant as long as the kinetic sorption-induced spreading remains much larger than the dispersion-induced spreading. The variability of the surface-to-volume ratio, a key parameter in sorption reactions, is explicitly accounted for by deforming the shape of the elementary volumes.
地下环境中的输运受到相互作用的物理和化学过程的控制,其中对流和弥散是最常见的物理过程,而吸附是最常见的化学反应。在高度非均质地层中,现有的数值方法变得非常耗时。在本文中,我们讨论了一种新的用于主导输运条件的对流的高效拉格朗日方法。该方法源自主动步行者方法,包括将水相分为随流移动并与固相相互作用的基本体积。通过使基本体积的传输时间适应局部速度,避免数值扩散,该方法无论速度场如何都保持高效,从而在单个数值时间步内穿过网格单元。该方法具有灵活性,因为在基本体积尺度(即考虑的最低尺度)上实现了物理和化学过程的解耦。我们将该方法应用于非线性 Freundlich 动力学吸附的具体情况,并进行了验证。只要动力学吸附引起的展宽比弥散引起的展宽大得多,该方法就是适用的。通过改变基本体积的形状,显式地考虑了比表面积比这一关键吸附反应参数的变化。