Faculty of Actuarial Science and Insurance, Cass Business School, 106 Bunhill Row, London EC1Y 8TZ, UK.
Forensic Sci Int Genet. 2011 Jun;5(3):202-9. doi: 10.1016/j.fsigen.2010.03.008. Epub 2010 May 7.
This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example.
本文提出了一个连贯的概率框架,用于在使用 PCR 分析产生的峰大小信息解释混合样本中的 STR DNA 谱时,考虑等位基因缺失、重排带和沉默等位基因。可以利用这些信息来评估特定人 DNA 是否存在于混合物中的假设的证据强度。它扩展了早期忽略此类伪影的贝叶斯网络方法。我们在已发表的案例示例上展示了扩展网络的使用。