Suppr超能文献

一对类似的 tRNA 修饰酶对催化循环的控制。

Control of catalytic cycle by a pair of analogous tRNA modification enzymes.

机构信息

Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10th Street, BLSB 220, Philadelphia, PA 19107, USA.

出版信息

J Mol Biol. 2010 Jul 9;400(2):204-17. doi: 10.1016/j.jmb.2010.05.003. Epub 2010 May 7.

Abstract

Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3' position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process.

摘要

使用不同活性位点结构执行相同反应的酶被称为类似酶。类似酶的分离表明存在多种酶结构途径,可以催化相同的化学反应。关于类似酶的一个基本问题是,它们不同的活性位点结构是否会对化学反应施加相同或不同的动力学限制,特别是在控制酶周转率方面。在这里,我们用细菌 TrmD 及其真核和古菌对应物 Trm5 的类似酶来解决这个问题。TrmD 和 Trm5 催化甲基转移,使用 S-腺苷甲硫氨酸 (AdoMet) 作为甲基供体,在 tRNA 反密码子相邻的 3'位置合成 m1G37 碱基。TrmD 具有三叶形结活性位点结构,而 Trm5 具有 Rossmann 折叠结构。预稳态分析显示,TrmD 的产物合成随时间呈线性增加,而 Trm5 的产物合成则表现出快速爆发,随后随时间缓慢增加。Trm5 的爆发动力学表明产物释放是催化循环的限速步骤,这与观察到更高的酶对 tRNA 和 AdoMet 产物的亲和力一致。相比之下,TrmD 缺乏爆发动力学表明其周转率受到产物合成所需步骤的控制。尽管 TrmD 以同源二聚体形式存在,但它对 tRNA 结合和产物合成表现出半位点反应性。TrmD 和 Trm5 之间的动力学差异与两类氨酰-tRNA 合成酶平行,它们使用不同的活性位点结构催化 tRNA 氨酰化。这种平行表明,这些发现对于在解码过程中催化甲基和氨酰基转移到 tRNA 的酶具有重要的基础性。

相似文献

1
Control of catalytic cycle by a pair of analogous tRNA modification enzymes.
J Mol Biol. 2010 Jul 9;400(2):204-17. doi: 10.1016/j.jmb.2010.05.003. Epub 2010 May 7.
2
Conservation of structure and mechanism by Trm5 enzymes.
RNA. 2013 Sep;19(9):1192-9. doi: 10.1261/rna.039503.113. Epub 2013 Jul 25.
3
Kinetic Analysis of tRNA Methyltransferases.
Methods Enzymol. 2015;560:91-116. doi: 10.1016/bs.mie.2015.04.012. Epub 2015 Jun 2.
4
Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline.
Biochemistry. 2006 Jun 20;45(24):7463-73. doi: 10.1021/bi0602314.
5
Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases.
J Mol Biol. 2007 Oct 26;373(3):623-32. doi: 10.1016/j.jmb.2007.08.010. Epub 2007 Aug 21.
6
Differentiating analogous tRNA methyltransferases by fragments of the methyl donor.
RNA. 2011 Jul;17(7):1236-46. doi: 10.1261/rna.2706011. Epub 2011 May 20.
7
Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4197-205. doi: 10.1073/pnas.1422981112. Epub 2015 Jul 16.
9
Distinct origins of tRNA(m1G37) methyltransferase.
J Mol Biol. 2004 Jun 11;339(4):707-19. doi: 10.1016/j.jmb.2004.04.025.

引用本文的文献

1
m6A modification is incorporated into bacterial mRNA without specific functional benefit.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf425.
2
Connecting tRNA Charging and Decoding through the Axis of Nucleotide Modifications at Position 37.
J Mol Biol. 2025 Aug 15;437(16):169095. doi: 10.1016/j.jmb.2025.169095. Epub 2025 Mar 18.
3
Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs.
Nucleic Acids Res. 2023 Oct 27;51(19):10653-10667. doi: 10.1093/nar/gkad722.
4
tRNA methylation resolves codon usage bias at the limit of cell viability.
Cell Rep. 2022 Oct 25;41(4):111539. doi: 10.1016/j.celrep.2022.111539.
6
New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1.
RNA Biol. 2021 Dec;18(12):2531-2545. doi: 10.1080/15476286.2021.1930756. Epub 2021 Jun 10.
7
Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA.
Nat Commun. 2021 Jan 12;12(1):328. doi: 10.1038/s41467-020-20373-z.
8
Mg-Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study.
ACS Catal. 2020 Aug 7;10(15):8058-8068. doi: 10.1021/acscatal.0c00059. Epub 2020 Jun 22.
9
tRNA methylation: An unexpected link to bacterial resistance and persistence to antibiotics and beyond.
Wiley Interdiscip Rev RNA. 2020 Nov;11(6):e1609. doi: 10.1002/wrna.1609. Epub 2020 Jun 13.
10
Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites.
PLoS Comput Biol. 2020 May 26;16(5):e1007904. doi: 10.1371/journal.pcbi.1007904. eCollection 2020 May.

本文引用的文献

1
Tertiary structure checkpoint at anticodon loop modification in tRNA functional maturation.
Nat Struct Mol Biol. 2009 Oct;16(10):1109-15. doi: 10.1038/nsmb.1653. Epub 2009 Sep 13.
2
Asymmetric amino acid activation by class II histidyl-tRNA synthetase from Escherichia coli.
J Biol Chem. 2009 Jul 31;284(31):20753-62. doi: 10.1074/jbc.M109.021311. Epub 2009 Jun 1.
3
The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity.
J Biol Chem. 2008 Aug 8;283(32):21997-2006. doi: 10.1074/jbc.M801838200. Epub 2008 Jun 17.
4
tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control.
J Mol Biol. 2008 Jun 6;379(3):579-88. doi: 10.1016/j.jmb.2008.04.005. Epub 2008 Apr 8.
5
Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
Nat Struct Mol Biol. 2008 May;15(5):507-14. doi: 10.1038/nsmb.1423. Epub 2008 Apr 20.
6
Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5.
Proteins. 2008 Sep;72(4):1274-89. doi: 10.1002/prot.22019.
8
Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases.
J Mol Biol. 2007 Oct 26;373(3):623-32. doi: 10.1016/j.jmb.2007.08.010. Epub 2007 Aug 21.
9
Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase.
J Biol Chem. 2007 Sep 21;282(38):27744-53. doi: 10.1074/jbc.M704572200. Epub 2007 Jul 25.
10
Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
Nat Struct Mol Biol. 2007 Apr;14(4):272-9. doi: 10.1038/nsmb1219. Epub 2007 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验