Dupasquier Marcel, Kim Sangbumn, Halkidis Konstantine, Gamper Howard, Hou Ya-Ming
Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
J Mol Biol. 2008 Jun 6;379(3):579-88. doi: 10.1016/j.jmb.2008.04.005. Epub 2008 Apr 8.
CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.
在tRNA成熟过程中,在3'末端添加CCA是一个关键步骤。CCA酶的高分辨率晶体结构揭示了该酶与tRNA小螺旋结构域的主要接触,该结构域由受体茎和T茎环组成。在稳态动力学中,RNA和DNA小螺旋是添加CCA的有效底物。然而,与结构模型和稳态实验不同,我们在此通过单轮动力学表明,小螺旋对于大肠杆菌CCA酶而言并非足够的底物,只有全长tRNA在动力学上是合适的。即使在T环的全长tRNA主链上有一个切口,或者像在反密码子环中那样远离小螺旋结构域,也会阻止有效的CCA添加。这些结果表明,CCA酶提供了一种动力学质量控制机制,以检查tRNA分子的完整性,并区分有切口或受损的tRNA分子,使其不能进一步成熟。