Suppr超能文献

从表面肌电图特征的非线性映射预测动态疲劳运动中的力损失。

Predicting force loss during dynamic fatiguing exercises from non-linear mapping of features of the surface electromyogram.

机构信息

Department of Electric and Electronic Engineering, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain.

出版信息

J Neurosci Methods. 2010 Jul 15;190(2):271-8. doi: 10.1016/j.jneumeth.2010.05.003. Epub 2010 May 7.

Abstract

This study proposes a method for estimating force loss during fatiguing maximal isokinetic knee extension contractions using a set of features from surface EMG signals recorded from multiple locations over the quadriceps muscle. Nine healthy participants performed fatiguing tests which consisted of 50 and 75 isokinetic leg extensions at a speed of 30 degrees /s and 80 degrees /s in two experimental sessions on different days. The set of data recorded from one of the experimental sessions (at both velocities) was used to train a multi-layer perceptron neural network to associate force loss (direct measure of fatigue) to EMG features. The data from the other session (obtained from the tests at both velocities) were used for testing the neural network performance. The proposed method was compared with a previous approach for the assessment of fatigue (Mapping Index, MI) using a signal to noise metrics computed on the estimated trend of fatigue. The signal to noise ratio obtained with the proposed approach was greater (8.83+/-1.07) than that obtained with the MI (5.67+/-1.17) (P<0.05) when the subjects were analyzed individually and when the network was trained over the entire subject group (8.07 vs. 4.42). In conclusion, the proposed approach allows estimation of force loss during maximal dynamic knee extensions from surface EMG signals with greater accuracy than previous methods.

摘要

本研究提出了一种使用表面肌电图(EMG)信号特征来估计疲劳状态下最大等速膝关节伸展收缩力损失的方法。9 名健康参与者在两天的两个实验中,以 30 度/秒和 80 度/秒的速度进行了 50 次和 75 次疲劳测试。在其中一个实验中记录的一组数据(在两个速度下)用于训练多层感知器神经网络,将力损失(疲劳的直接测量)与 EMG 特征相关联。另一个实验的数据(在两个速度下的测试中获得)用于测试神经网络的性能。所提出的方法与以前的评估疲劳的方法(映射指数,MI)进行了比较,使用估计疲劳趋势的信号噪声比进行了比较。当个体分析和网络在整个受试者组中进行训练时,所提出的方法获得的信号噪声比(8.83+/-1.07)大于 MI(5.67+/-1.17)(P<0.05)。总之,与以前的方法相比,所提出的方法能够更准确地从表面 EMG 信号估计最大动态膝关节伸展时的力损失。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验