The Xi'an Research Institute of High Technology, Xi'an, Shaanxi 710025, PR China.
Neural Netw. 2010 Sep;23(7):865-71. doi: 10.1016/j.neunet.2010.04.001. Epub 2010 May 8.
Minor subspace analysis (MSA) is a statistical method for extracting the subspace spanned by all the eigenvectors associated with the minor eigenvalues of the autocorrelation matrix of a high-dimension vector sequence. In this paper, we propose a self-stabilizing neural network learning algorithm for tracking minor subspace in high-dimension data stream. Dynamics of the proposed algorithm are analyzed via a corresponding deterministic continuous time (DCT) system and stochastic discrete time (SDT) system methods. The proposed algorithm provides an efficient online learning for tracking the MS and can track an orthonormal basis of the MS. Computer simulations are carried out to confirm the theoretical results.
微子空间分析(MSA)是一种统计方法,用于提取与高维向量序列自相关矩阵的小特征值相关的所有特征向量所张成的子空间。在本文中,我们提出了一种用于跟踪高维数据流中小子空间的自稳定神经网络学习算法。通过相应的确定性连续时间(DCT)系统和随机离散时间(SDT)系统方法分析了所提出算法的动力学。所提出的算法为跟踪 MS 提供了有效的在线学习,并可以跟踪 MS 的一个正交基。计算机仿真证实了理论结果。