Peng Dezhong, Yi Zhang, Luo Wenjing
Computational Intelligence Lab, School of Computer Science and Engineering, University of Electronic Science and Technology of China, PR China.
Neural Netw. 2007 Sep;20(7):842-50. doi: 10.1016/j.neunet.2007.07.001. Epub 2007 Jul 21.
Minor component analysis (MCA) is a powerful statistical tool for signal processing and data analysis. Convergence of MCA learning algorithms is an important issue in practical applications. In this paper, we will propose a simple MCA learning algorithm to extract minor component from input signals. Dynamics of the proposed MCA learning algorithm are analysed using a corresponding deterministic discrete time (DDT) system. It is proved that almost all trajectories of the DDT system will converge to minor component if the learning rate satisfies some mild conditions and the trajectories start from points in an invariant set. Simulation results will be furnished to illustrate the theoretical results achieved.
次要成分分析(MCA)是一种用于信号处理和数据分析的强大统计工具。MCA学习算法的收敛性是实际应用中的一个重要问题。在本文中,我们将提出一种简单的MCA学习算法,用于从输入信号中提取次要成分。使用相应的确定性离散时间(DDT)系统分析了所提出的MCA学习算法的动态特性。证明了如果学习率满足一些温和条件且轨迹从不变集中的点开始,则DDT系统的几乎所有轨迹都将收敛到次要成分。将提供仿真结果以说明所取得的理论结果。