Malone C D, Hannon G J
Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
Cold Spring Harb Symp Quant Biol. 2009;74:225-34. doi: 10.1101/sqb.2009.74.052. Epub 2010 May 7.
The mere prevalence and potential mobilization of transposable elements in eukaryotic genomes present challenges at both the organismal and population levels. Not only is transposition able to alter gene function and chromosomal structure, but loss of control over even a single active element in the germline can create an evolutionary dead end. Despite the dangers of coexistence, transposons and their activity have been shown to drive the evolution of gene function, chromosomal organization, and even population dynamics (Kazazian 2004). This implies that organisms have adopted elaborate means to balance both the positive and detrimental consequences of transposon activity. In this chapter, we focus on the fruit fly to explore some of the molecular clues into the long- and short-term adaptation to transposon colonization and persistence within eukaryotic genomes.
转座元件在真核生物基因组中的普遍存在及其潜在的移动性,在生物体和种群层面都带来了挑战。转座不仅能够改变基因功能和染色体结构,而且生殖系中哪怕一个活性元件的失控都可能导致进化的死胡同。尽管存在共存的危险,但转座子及其活性已被证明可推动基因功能、染色体组织乃至种群动态的进化(卡扎齐安,2004年)。这意味着生物体已经采取了复杂的手段来平衡转座子活性的正面和负面后果。在本章中,我们将聚焦果蝇,探索一些分子线索,以了解真核生物基因组对转座子定植和持续存在的长期和短期适应性。