Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America.
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Biol. 2018 Oct 30;16(10):e2006040. doi: 10.1371/journal.pbio.2006040. eCollection 2018 Oct.
Transposable elements (TEs) are obligate genetic parasites that propagate in host genomes by replicating in germline nuclei, thereby ensuring transmission to offspring. This selfish replication not only produces deleterious mutations-in extreme cases, TE mobilization induces genotoxic stress that prohibits the production of viable gametes. Host genomes could reduce these fitness effects in two ways: resistance and tolerance. Resistance to TE propagation is enacted by germline-specific small-RNA-mediated silencing pathways, such as the Piwi-interacting RNA (piRNA) pathway, and is studied extensively. However, it remains entirely unknown whether host genomes may also evolve tolerance by desensitizing gametogenesis to the harmful effects of TEs. In part, the absence of research on tolerance reflects a lack of opportunity, as small-RNA-mediated silencing evolves rapidly after a new TE invades, thereby masking existing variation in tolerance. We have exploited the recent historical invasion of the Drosophila melanogaster genome by P-element DNA transposons in order to study tolerance of TE activity. In the absence of piRNA-mediated silencing, the genotoxic stress imposed by P-elements disrupts oogenesis and, in extreme cases, leads to atrophied ovaries that completely lack germline cells. By performing quantitative trait locus (QTL) mapping on a panel of recombinant inbred lines (RILs) that lack piRNA-mediated silencing of P-elements, we uncovered multiple QTL that are associated with differences in tolerance of oogenesis to P-element transposition. We localized the most significant QTL to a small 230-kb euchromatic region, with the logarithm of the odds (LOD) peak occurring in the bruno locus, which codes for a critical and well-studied developmental regulator of oogenesis. Genetic, cytological, and expression analyses suggest that bruno dosage modulates germline stem cell (GSC) loss in the presence of P-element activity. Our observations reveal segregating variation in TE tolerance for the first time, and implicate gametogenic regulators as a source of tolerant variants in natural populations.
转座元件 (TEs) 是必需的遗传寄生虫,它们通过在生殖细胞核中复制来在宿主基因组中繁殖,从而确保将其传递给后代。这种自私的复制不仅会产生有害的突变——在极端情况下,TE 的动员会引起遗传毒性应激,从而禁止有活力的配子的产生。宿主基因组可以通过两种方式减少这些适应度效应:抵抗和耐受。抵抗 TE 传播是通过生殖系特异性小 RNA 介导的沉默途径来实现的,例如 Piwi 相互作用 RNA (piRNA) 途径,并得到了广泛的研究。然而,宿主基因组是否也可以通过使配子发生脱敏而耐受 TE 的有害影响,仍然完全未知。部分原因是,由于小 RNA 介导的沉默在新的 TE 入侵后迅速进化,从而掩盖了耐受的现有变异,因此对耐受的研究缺乏机会。我们利用了黑腹果蝇基因组中 P 元素 DNA 转座子的最近历史入侵,以研究 TE 活性的耐受性。在缺乏 piRNA 介导的沉默的情况下,P 元件施加的遗传毒性应激会破坏卵母细胞发生,并在极端情况下导致卵巢萎缩,完全缺乏生殖细胞。通过对一组缺乏 P 元件 piRNA 介导沉默的重组近交系 (RIL) 进行数量性状位点 (QTL) 作图,我们发现了多个与 P 元件转位对卵母细胞发生的耐受性差异相关的 QTL。我们将最显著的 QTL 定位到一个小的 230kb 常染色质区域,对数优势 (LOD) 峰值出现在 bruno 基因座,该基因座编码卵母细胞发生的一个关键且研究充分的发育调节剂。遗传、细胞学和表达分析表明,在 P 元件活性存在的情况下,bruno 剂量会调节生殖干细胞 (GSC) 的丢失。我们的观察结果首次揭示了 TE 耐受的分离变异,并暗示配子发生调节剂是自然种群中耐受变体的来源。