Park Wooram, Liu Yan, Zhou Yu, Moses Matthew, Chirikjian Gregory S
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Robotica. 2008 Apr 11;26:419-434. doi: 10.1017/S0263574708004475.
A nonholonomic system subjected to external noise from the environment, or internal noise in its own actuators, will evolve in a stochastic manner described by an ensemble of trajectories. This ensemble of trajectories is equivalent to the solution of a Fokker-Planck equation that typically evolves on a Lie group. If the most likely state of such a system is to be estimated, and plans for subsequent motions from the current state are to be made so as to move the system to a desired state with high probability, then modeling how the probability density of the system evolves is critical. Methods for solving Fokker-Planck equations that evolve on Lie groups then become important. Such equations can be solved using the operational properties of group Fourier transforms in which irreducible unitary representation (IUR) matrices play a critical role. Therefore, we develop a simple approach for the numerical approximation of all the IUR matrices for two of the groups of most interest in robotics: the rotation group in three-dimensional space, SO(3), and the Euclidean motion group of the plane, SE(2). This approach uses the exponential mapping from the Lie algebras of these groups, and takes advantage of the sparse nature of the Lie algebra representation matrices. Other techniques for density estimation on groups are also explored. The computed densities are applied in the context of probabilistic path planning for kinematic cart in the plane and flexible needle steering in three-dimensional space. In these examples the injection of artificial noise into the computational models (rather than noise in the actual physical systems) serves as a tool to search the configuration spaces and plan paths. Finally, we illustrate how density estimation problems arise in the characterization of physical noise in orientational sensors such as gyroscopes.
一个受到来自环境的外部噪声或自身执行器内部噪声影响的非完整系统,将以由一组轨迹描述的随机方式演化。这组轨迹等同于通常在李群上演化的福克 - 普朗克方程的解。如果要估计这样一个系统的最可能状态,并制定从当前状态进行后续运动的计划,以便将系统以高概率移动到期望状态,那么对系统概率密度如何演化进行建模就至关重要。求解在李群上演化的福克 - 普朗克方程的方法就变得很重要。这样的方程可以使用群傅里叶变换的运算性质来求解,其中不可约酉表示(IUR)矩阵起着关键作用。因此,我们为机器人技术中最感兴趣的两组群:三维空间中的旋转群SO(3)和平面上的欧几里得运动群SE(2),开发了一种用于数值逼近所有IUR矩阵的简单方法。这种方法使用了这些群的李代数的指数映射,并利用了李代数表示矩阵的稀疏性质。还探索了其他用于群上密度估计的技术。计算得到的密度应用于平面上运动小车的概率路径规划以及三维空间中柔性针转向的背景下。在这些例子中,将人工噪声注入计算模型(而不是实际物理系统中的噪声)作为搜索配置空间和规划路径的工具。最后,我们说明了在诸如陀螺仪等定向传感器的物理噪声表征中如何出现密度估计问题。