Suppr超能文献

从无对应关系的球面图像中恢复旋转

Rotation recovery from spherical images without correspondences.

作者信息

Makadia Ameesh, Daniilidis Kostas

机构信息

GRASP Laboratory, Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2006 Jul;28(7):1170-5. doi: 10.1109/TPAMI.2006.150.

Abstract

This paper addresses the problem of rotation estimation directly from images defined on the sphere and without correspondence. The method is particularly useful for the alignment of large rotations and has potential impact on 3D shape alignment. The foundation of the method lies in the fact that the spherical harmonic coefficients undergo a unitary mapping when the original image is rotated. The correlation between two images is a function of rotations and we show that it has an SO(3)-Fourier transform equal to the pointwise product of spherical harmonic coefficients of the original images. The resolution of the rotation space depends on the bandwidth we choose for the harmonic expansion and the rotation estimate is found through a direct search in this 3D discretized space. A refinement of the rotation estimate can be obtained from the conservation of harmonic coefficients in the rotational shift theorem. A novel decoupling of the shift theorem with respect to the Euler angles is presented and exploited in an iterative scheme to refine the initial rotation estimates. Experiments show the suitability of the method for large rotations and the dependence of the method on bandwidth and the choice of the spherical harmonic coefficients.

摘要

本文直接针对从球面上定义的图像且无需对应关系来估计旋转的问题。该方法对于大旋转的对齐特别有用,并且对三维形状对齐具有潜在影响。该方法的基础在于,当原始图像旋转时,球谐系数会经历酉映射。两幅图像之间的相关性是旋转的函数,并且我们表明它具有等于原始图像球谐系数逐点乘积的SO(3)傅里叶变换。旋转空间的分辨率取决于我们为谐波展开选择的带宽,并且通过在这个三维离散空间中直接搜索来找到旋转估计。可以从旋转移位定理中的谐波系数守恒获得旋转估计的细化。提出了一种关于欧拉角的移位定理的新颖解耦,并在迭代方案中加以利用以细化初始旋转估计。实验表明了该方法适用于大旋转以及该方法对带宽和球谐系数选择的依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验