Department of Biology, University of York, Heslington, York YO10 5YW, United Kingdom.
Proteins. 2010 Jul;78(9):2131-43. doi: 10.1002/prot.22726.
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize the trimeric TPR-containing protein YbgF, which is linked to the Tol system in Gram-negative bacteria. By subtracting previously identified TPR consensus residues required for stability of the fold from residues conserved across YbgF homologs, we identified residues involved in oligomerization of the C-terminal YbgF TPR domain. Crafting these residues, which are located in loop regions between TPR motifs, onto the monomeric consensus TPR protein CTPR3 induced the formation of oligomers. The crystal structure of this engineered oligomer shows an asymmetric trimer where stacking interactions between the introduced tyrosines and displacement of the C-terminal hydrophilic capping helix, present in most TPR domains, are key to oligomerization. Asymmetric trimerization of the YbgF TPR domain and CTPR3Y3 leads to the formation of higher order oligomers both in the crystal and in solution. However, such open-ended self-association does not occur in full-length YbgF suggesting that the protein's N-terminal coiled-coil domain restricts further oligomerization. This interpretation is borne out in experiments where the coiled-coil domain of YbgF was engineered onto the N-terminus of CTPR3Y3 and shown to block self-association beyond trimerization. Our study lays the foundations for understanding the structural basis for TPR domain self-association and how such self-association can be regulated in TPR domain-containing proteins.
四肽重复(TPR)基序是一种蛋白质-蛋白质相互作用模块,作为调节多种生物过程的复合物的组织中心。尽管有越来越多的证据表明 TPR 寡聚体的形成是一种额外的调节层次,但缺乏解释 TPR 自组装的结构和溶液数据。在本工作中,我们表征了三聚体 TPR 含有的 YbgF 蛋白,该蛋白与革兰氏阴性细菌中的 Tol 系统有关。通过从 YbgF 同源物保守的残基中减去先前鉴定的稳定折叠所需的 TPR 共识残基,我们鉴定了参与 C 末端 YbgF TPR 结构域寡聚化的残基。将这些位于 TPR 结构域之间环区的残基构建到单体共识 TPR 蛋白 CTPR3 上,诱导了寡聚体的形成。该工程化寡聚体的晶体结构显示出一个不对称的三聚体,其中引入的酪氨酸之间的堆积相互作用和大多数 TPR 结构域中存在的 C 末端亲水帽螺旋的位移是寡聚化的关键。YbgF TPR 结构域和 CTPR3Y3 的不对称三聚化导致在晶体中和溶液中形成更高阶的寡聚体。然而,全长 YbgF 中不会发生这种无限制的自组装,这表明该蛋白的 N 端卷曲螺旋结构域限制了进一步的寡聚化。这一解释在实验中得到了验证,即 YbgF 的卷曲螺旋结构域被工程化到 CTPR3Y3 的 N 端,并显示出阻止自组装超过三聚体。我们的研究为理解 TPR 结构域自组装的结构基础以及如何在含 TPR 结构域的蛋白质中调节这种自组装奠定了基础。