Center for Molecular Protein Science, Institute for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany.
J Biol Chem. 2013 Mar 22;288(12):8156-8167. doi: 10.1074/jbc.M112.442285. Epub 2013 Jan 23.
The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis, and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle x-ray scattering and x-ray crystallography, we describe the solution structure of the oligomers formed during the iron-dependent assembly of yeast (Yfh1) and Escherichia coli (CyaY) frataxin. At an iron-to-protein ratio of 2, the initially monomeric Yfh1 is converted to a trimeric form in solution. The trimer in turn serves as the assembly unit for higher order oligomers induced at higher iron-to-protein ratios. The x-ray crystallographic structure obtained from iron-soaked crystals demonstrates that iron binds at the trimer-trimer interaction sites, presumably contributing to oligomer stabilization. For the ferroxidation-deficient D79A/D82A variant of Yfh1, iron-dependent oligomerization may still take place, although >50% of the protein is found in the monomeric state at the highest iron-to-protein ratio used. This demonstrates that the ferroxidation reaction controls frataxin assembly and presumably the iron chaperone function of frataxin and its interactions with target proteins. For E. coli CyaY, the assembly unit of higher order oligomers is a tetramer, which could be an effect of the much shorter N-terminal region of this protein. The results show that understanding of the mechanistic features of frataxin function requires detailed knowledge of the interplay between the ferroxidation reaction, iron-induced oligomerization, and the structure of oligomers formed during assembly.
在过去的十年中,人们对线粒体蛋白 frataxin 在铁储存和解毒、铁向铁硫簇生物合成、血红素生物合成和 aconitase 修复的递送上的作用进行了广泛的研究。然而,关于 frataxin 功能和寡聚化的机制细节仍未达成共识。在这里,我们使用小角度 X 射线散射和 X 射线晶体学描述了在酵母(Yfh1)和大肠杆菌(CyaY)frataxin 的铁依赖性组装过程中形成的寡聚物的溶液结构。在铁与蛋白的比例为 2 时,最初的单体 Yfh1 在溶液中转化为三聚体形式。三聚体又作为更高阶寡聚体的组装单元,在更高的铁与蛋白比例下诱导形成。从铁浸泡晶体中获得的 X 射线晶体结构表明,铁结合在三聚体-三聚体相互作用位点上,可能有助于寡聚体的稳定。对于 Yfh1 的铁氧化缺陷 D79A/D82A 变体,尽管在使用的最高铁与蛋白比中,有>50%的蛋白质处于单体状态,但铁依赖性寡聚化仍可能发生。这表明铁氧化反应控制 frataxin 的组装,推测控制 frataxin 的铁伴侣功能及其与靶蛋白的相互作用。对于大肠杆菌 CyaY,更高阶寡聚体的组装单元是一个四聚体,这可能是由于该蛋白的 N 端区域较短所致。结果表明,要理解 frataxin 功能的机制特征,需要详细了解铁氧化反应、铁诱导寡聚化以及组装过程中形成的寡聚物的结构之间的相互作用。