Zambrano-Angulo Michael, Cárdenas-Jirón Gloria
Dipartimento Di Fisica "E. Pancini", Università Napoli Federico II, Naples, Italy.
Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
J Mol Model. 2024 Nov 18;30(12):403. doi: 10.1007/s00894-024-06211-9.
The zinc (II) and silicon (IV) phthalocyanine adsorption on a TiO and SnO semiconductor surface was investigated using the density functional theory. Several effects were studied: the semiconductor (TiO, SnO), the central metal atom in the phthalocyanine (Zn, Si), the substituent groups in the phthalocyanine, and the anchor group (anhydrous, carboxyl) connecting the phthalocyanine with the semiconductor. The application of methodologies to study the intermolecular interactions predicted a stronger zinc and silicon phthalocyanine adsorption with carboxyl than anhydrous. Adsorption energies for phthalocyanines anchored by a carboxyl group indicate a stronger adsorption for TiO than for SnO with energy differences of up to 7 eV. The presence of coordinative and more van der Waals interactions in TiO can explain this. This work is carried out to understand the interaction between phthalocyanines and the semiconductor surface, a crucial aspect of the efficient performance of solar cells.
We modeled two semiconductor surfaces in extended configuration (TiO and SnO), which were optimized with the GGA-PBE exchange-correlation functional for solids, including the Grimme's correction dispersion (D3). The meta-GGA TB09LDA exchange-correlation functional was employed to calculate the band gap energy of the semiconductors. The adsorption energies of the phthalocyanines adsorbed on the semiconductors were determined with GGA-PBE-D3 and corrected by the counterpoise method. The nature of the intermolecular interactions in the adsorption was analyzed using the non-covalent interactions (NCI) based on the promolecular approximation of electron density. These interactions were quantifiable by employing the intrinsic bond strength index (IBSI). We used the QuantumATK and the Multiwfn packages for all the calculations.
采用密度泛函理论研究了锌(II)和硅(IV)酞菁在TiO和SnO半导体表面的吸附情况。研究了多种效应:半导体(TiO、SnO)、酞菁中的中心金属原子(Zn、Si)、酞菁中的取代基以及连接酞菁与半导体的锚定基团(无水、羧基)。用于研究分子间相互作用的方法预测,羧基对锌和硅酞菁的吸附作用比无水情况更强。由羧基锚定的酞菁的吸附能表明,TiO的吸附作用比SnO更强,能量差高达7 eV。TiO中存在配位相互作用和更多的范德华相互作用可以解释这一点。开展这项工作是为了了解酞菁与半导体表面之间的相互作用,这是太阳能电池高效性能的一个关键方面。
我们对两种处于扩展构型的半导体表面(TiO和SnO)进行建模,使用针对固体的GGA-PBE交换相关泛函对其进行优化,包括Grimme的色散校正(D3)。采用meta-GGA TB09LDA交换相关泛函来计算半导体的带隙能量。用GGA-PBE-D3确定吸附在半导体上的酞菁的吸附能,并通过零点能校正方法进行校正。基于电子密度的前分子近似,使用非共价相互作用(NCI)分析吸附中分子间相互作用的性质。这些相互作用可通过固有键强度指数(IBSI)进行量化。我们使用QuantumATK和Multiwfn软件包进行所有计算。