Department of Psychology, Northwestern University, Family Institute at Northwestern University, Evanston, IL 60208-2710, USA.
J Abnorm Psychol. 2010 May;119(2):307-19. doi: 10.1037/a0017552.
Miller and Chapman (2001) argued that 1 major class of misuse of analysis of covariance (ANCOVA) or its multiple regression counterpart, analysis of partial variance (APV), arises from attempts to use an ANCOVA/APV to answer a research question that is not meaningful in the 1st place. Unfortunately, there is another misuse of ANCOVAs/APVs that arises frequently in psychopathology studies even when addressing consensually meaningful research questions. This misuse arises from inflated Type I error rates in ANCOVA/APV inferential tests of the unique association of the independent variable with the dependent variable when the covariate and independent variables are correlated and measured with error. Alternatives to conventional ANCOVAs/APVs are discussed, as are steps that can be taken to minimize the impact of this bias on drawing valid inferences when conventional ANCOVAs/APVs are used.
米勒和查普曼(2001)认为,协方差分析(ANCOVA)或其多元回归对应物——部分方差分析(APV)的一大类误用源于试图使用 ANCOVA/APV 来回答一个本身没有意义的研究问题。不幸的是,即使在解决一致认为有意义的研究问题时,协方差分析/部分方差分析在心理病理学研究中也经常出现另一种误用。这种误用源于当协变量和自变量相关且存在测量误差时,对自变量与因变量的独特关联进行 ANCOVA/APV 推断检验时,I 型错误率膨胀。本文讨论了传统的协方差分析/部分方差分析的替代方法,以及在使用传统的协方差分析/部分方差分析时,为了尽量减少这种偏差对得出有效推论的影响,可以采取的步骤。