Suppr超能文献

胶质细胞衍生的三碘甲状腺原氨酸的旁分泌信号激活啮齿动物大脑和人类细胞中的神经元基因表达。

Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells.

机构信息

Laboratory of Molecular Endocrinology, Division of Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo SP, Brazil.

出版信息

J Clin Invest. 2010 Jun;120(6):2206-17. doi: 10.1172/JCI41977. Epub 2010 May 10.

Abstract

Hypothyroidism in humans is characterized by severe neurological consequences that are often irreversible, highlighting the critical role of thyroid hormone (TH) in the brain. Despite this, not much is known about the signaling pathways that control TH action in the brain. What is known is that the prohormone thyroxine (T4) is converted to the active hormone triiodothyronine (T3) by type 2 deiodinase (D2) and that this occurs in astrocytes, while TH receptors and type 3 deiodinase (D3), which inactivates T3, are found in adjacent neurons. Here, we modeled TH action in the brain using an in vitro coculture system of D2-expressing H4 human glioma cells and D3-expressing SK-N-AS human neuroblastoma cells. We found that glial cell D2 activity resulted in increased T3 production, which acted in a paracrine fashion to induce T3-responsive genes, including ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), in the cocultured neurons. D3 activity in the neurons modulated these effects. Furthermore, this paracrine pathway was regulated by signals such as hypoxia, hedgehog signaling, and LPS-induced inflammation, as evidenced both in the in vitro coculture system and in in vivo rat models of brain ischemia and mouse models of inflammation. This study therefore presents what we believe to be the first direct evidence for a paracrine loop linking glial D2 activity to TH receptors in neurons, thereby identifying deiodinases as potential control points for the regulation of TH signaling in the brain during health and disease.

摘要

人类甲状腺功能减退症的特征是严重的神经后果,这些后果往往是不可逆转的,这凸显了甲状腺激素(TH)在大脑中的关键作用。尽管如此,人们对控制大脑中 TH 作用的信号通路知之甚少。已知的是,前激素甲状腺素(T4)被 2 型脱碘酶(D2)转化为活性激素三碘甲状腺原氨酸(T3),这种转化发生在星形胶质细胞中,而 TH 受体和 3 型脱碘酶(D3)则在相邻的神经元中发现,它使 T3 失活。在这里,我们使用表达 D2 的 H4 人神经胶质瘤细胞和表达 D3 的 SK-N-AS 人神经母细胞瘤细胞的体外共培养系统来模拟大脑中的 TH 作用。我们发现胶质细胞 D2 的活性导致 T3 产量增加,T3 以旁分泌的方式作用于共培养的神经元,诱导 T3 反应基因,包括核苷酸焦磷酸酶/磷酸二酯酶 2(ENPP2)。神经元中的 D3 活性调节这些效应。此外,这种旁分泌途径受缺氧、 hedgehog 信号和 LPS 诱导的炎症等信号的调节,这在体外共培养系统以及大脑缺血的体内大鼠模型和炎症的体内小鼠模型中都得到了证明。因此,本研究首次提供了直接证据,证明了胶质细胞 D2 活性与神经元中的 TH 受体之间存在旁分泌环,从而将脱碘酶确定为在健康和疾病期间调节大脑中 TH 信号的潜在控制点。

相似文献

5
Type 2 deiodinase at the crossroads of thyroid hormone action.2 型脱碘酶在甲状腺激素作用的十字路口。
Int J Biochem Cell Biol. 2011 Oct;43(10):1432-41. doi: 10.1016/j.biocel.2011.05.016. Epub 2011 Jun 12.

引用本文的文献

2
Thyroid Hormone Promotes Fetal Neurogenesis.甲状腺激素促进胎儿神经发生。
bioRxiv. 2025 May 14:2025.05.14.654075. doi: 10.1101/2025.05.14.654075.
3
Variable transduction of thyroid hormone signaling in structures of the mouse brain.小鼠脑结构中甲状腺激素信号传导的可变转导
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2415970122. doi: 10.1073/pnas.2415970122. Epub 2025 Feb 4.
8
The Physiological Functions and Polymorphisms of Type II Deiodinase.Ⅱ型脱碘酶的生理功能及多态性。
Endocrinol Metab (Seoul). 2023 Apr;38(2):190-202. doi: 10.3803/EnM.2022.1599. Epub 2023 Apr 27.
9
T3 levels and thyroid hormone signaling.T3 水平与甲状腺激素信号转导。
Front Endocrinol (Lausanne). 2022 Oct 27;13:1044691. doi: 10.3389/fendo.2022.1044691. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验