Suppr超能文献

化学激活和稳定的肼的形成与分解。

Formation and decomposition of chemically activated and stabilized hydrazine.

机构信息

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.

出版信息

J Phys Chem A. 2010 Jun 3;114(21):6235-49. doi: 10.1021/jp101640p.

Abstract

Recombination of two amidogen radicals, NH(2) (X(2)B1), is relevant to hydrazine formation, ammonia oxidation and pyrolysis, nitrogen reduction (fixation), and a variety of other N/H/X combustion, environmental, and interstellar processes. We have performed a comprehensive analysis of the N(2)H(4) potential energy surface, using a variety of theoretical methods, with thermochemical kinetic analysis and master equation simulations used to treat branching to different product sets in the chemically activated NH(2) + NH(2) process. For the first time, iminoammonium ylide (NH(3)NH), the less stable isomer of hydrazine, is involved in the kinetic modeling of N(2)H(4). A new, low-energy pathway is identified for the formation of NH(3) plus triplet NH, via initial production of NH(3)NH followed by singlet-triplet intersystem crossing. This new reaction channel results in the formation of dissociated products at a relatively rapid rate at even moderate temperatures and above. A further novel pathway is described for the decomposition of activated N(2)H(4), which eventually leads to the formation of the simple products N(2) + 2H(2), via H(2) elimination to cis-N(2)H(2). This process, termed as "dihydrogen catalysis", may have significant implications in the formation and decomposition chemistry of hydrazine and ammonia in diverse environments. In this mechanism, stereoselective attack of cis-N(2)H(2) by molecular hydrogen results in decomposition to N(2) with a fairly low barrier. The reverse termolecular reaction leading to the gas-phase formation of cis-N(2)H(2) + H(2) achieves non-heterogeneous catalytic nitrogen fixation with a relatively low activation barrier (77 kcal mol(-1)), much lower than the 125 kcal mol(-1) barrier recently reported for bimolecular addition of H(2) to N(2). This termolecular reaction is an entropically disfavored path, but it does describe a new means of activating the notoriously unreactive N(2). We design heterogeneous analogues of this reaction using the model compound (CH(3))(2)FeH(2) as a source of the H(2) catalyst and apply it to the decomposition of cis-diazene. The reaction is seen to proceed via a topologically similar transition state, suggesting that our newly described mechanism is general in nature.

摘要

两个氨基自由基 NH(2)(X(2)B1)的复合与联氨的形成、氨的氧化和热解、氮的还原(固定)以及各种其他 N/H/X 燃烧、环境和星际过程有关。我们使用各种理论方法对 N(2)H(4) 的势能面进行了全面分析,并使用热化学动力学分析和主方程模拟来处理化学激活的 NH(2) + NH(2) 过程中不同产物集的分支。这是第一次,亚氨基甲叉(NH(3)NH),联氨的不太稳定的异构体,参与了 N(2)H(4) 的动力学建模。通过最初生成 NH(3)NH 然后通过单重态-三重态系间交叉,确定了形成三重态 NH 和 NH(3)的新的低能途径。这种新的反应通道导致在甚至中等温度以上以相对较快的速率形成离解产物。进一步描述了一种新的活化 N(2)H(4) 分解途径,该途径最终通过 H(2)消除生成简单产物 N(2) + 2H(2),通过 cis-N(2)H(2) 形成顺式-N(2)H(2)。这种过程称为“氢气催化”,在不同环境中氨和联氨的形成和分解化学中可能具有重要意义。在该机制中,cis-N(2)H(2) 分子氢的立体选择性攻击导致 N(2)的分解,其势垒相当低。导致气相 cis-N(2)H(2) + H(2) 形成的反向三分子反应以相对较低的活化势垒(77 kcal mol(-1))实现非均相固氮催化,远低于最近报道的双分子 H(2) 加成到 N(2)的 125 kcal mol(-1) 势垒。这个三分子反应是一个熵不利的路径,但它确实描述了一种新的激活非常不活泼的 N(2)的方法。我们使用模型化合物 (CH(3))(2)FeH(2) 作为 H(2)催化剂的来源来设计该反应的多相类似物,并将其应用于顺二氮的分解。反应被认为是通过拓扑上相似的过渡态进行的,这表明我们新描述的机制在本质上是通用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验