Suppr超能文献

使用三头单光子发射计算机断层扫描(SPECT)系统进行动态采集:在锝99m-SQ30217心肌显像中的应用。

Dynamic acquisition with a three-headed SPECT system: application to technetium 99m-SQ30217 myocardial imaging.

作者信息

Nakajima K, Taki J, Bunko H, Matsudaira M, Muramori A, Matsunari I, Hisada K, Ichihara T

机构信息

Department of Nuclear Medicine, Kanazawa University Hospital, Japan.

出版信息

J Nucl Med. 1991 Jun;32(6):1273-7.

PMID:2045946
Abstract

A method for SPECT data acquisition, "continuous repetitive rotation acquisition," was developed with a high-sensitivity three-headed SPECT system. The method was applied to the dynamic imaging of 99mTc-SQ30217, a new myocardial imaging agent. After acquisition and reconstruction of SPECT data every minute, projection images at arbitrary intervals were used for tomographic reconstruction to determine the best timing of SPECT imaging in 99mTc-SQ30217. Based on a comparison of several possible acquisition intervals, SPECT data acquisition within 9 min after injection is recommended because of high myocardial uptake (myocardium-to-lung ratio, 2.83 +/- 0.42 (mean +/- s.e.m.) at 3-6 min) and relatively low hepatic uptake (myocardium-to-liver ratio, 0.85 +/- 0.13 at 3-6 min). The rate constant of the clearance of 99mTc-SQ30217 from the myocardium obtained by SPECT was: k1 = 0.249 +/- 0.050 per min (average half-life = 2.8 min) and k2 = 0.012 +/- 0.004/min (average half-life = 58 min). The continuous repetitive rotation acquisition SPECT study appears useful for imaging SQ30217 with its rapidly changing myocardial distribution.

摘要

一种用于单光子发射计算机断层扫描(SPECT)数据采集的方法——“连续重复旋转采集”,是利用高灵敏度三头SPECT系统开发的。该方法应用于新型心肌显像剂99mTc-SQ30217的动态成像。在每分钟采集和重建SPECT数据后,以任意时间间隔的投影图像用于断层重建,以确定99mTc-SQ30217的最佳SPECT成像时间。基于对几种可能采集间隔的比较,建议在注射后9分钟内进行SPECT数据采集,因为心肌摄取较高(3至6分钟时心肌与肺的比值为2.83±0.42(平均值±标准误))且肝脏摄取相对较低(3至6分钟时心肌与肝脏的比值为0.85±0.13)。通过SPECT获得的99mTc-SQ30217从心肌清除的速率常数为:k1 = 0.249±0.050/分钟(平均半衰期 = 2.8分钟),k2 = 0.012±0.004/分钟(平均半衰期 = 58分钟)。连续重复旋转采集SPECT研究似乎有助于对SQ30217进行成像,因为其心肌分布变化迅速。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验